1、京改版八年级数学上册期中考专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列说法错误的是()A中的可以是正数、负数、零B中的不可能是负数C数的平方根一定有两个,它们互为相反数D数的立方
2、根只有一个2、在下列各数中是无理数的有(),(相邻两个之间有个),A个B个C个D个3、计算的结果是()ABCD4、计算的结果正确的是()A1BC5D95、下列运算正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列运算错误的是()A(2xy1)36x3y3BC5a3D(x)7x2x52、下列说法不正确的是()A无理数就是开方开不尽的数B无理数是无限不循环小数C带根号的数都是无理数D无限小数都是无理数3、下列各式计算不正确的是()ABCD4、下列计算正确的是()ABCD5、下列是最简二次根式的有()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1
3、、计算:(1)_;(2)_2、若分式的值为负数,则x的取值范围是_3、比较大小:_4、已知,则的值是_5、某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为_人四、解答题(5小题,每小题8分,共计40分)1、在计算的值时,小亮的解题过程如下:解:原式(1)老师认为小亮的解法有错,请你指出:小亮是从第_步开始出错的;(2)请你给出正确的解题过程2、已知,求的算术平方根3、若分式有意义,求x的取值范围.4、计算:(1);(2)5、下面是小彬同学进行分式化简的过程,请认真阅读并完
4、成相应任务第一步第二步第三步 第四步第五步第六步任务一:填空:以上化简步骤中,第_步是进行分式的通分,通分的依据是_或填为_;第_步开始出现错误,这一步错误的原因是_;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议-参考答案-一、单选题1、C【解析】【分析】按照平方根和立方根的性质判断即可【详解】A. 中的可以是正数、负数、零,正确,不符合题意;B. 中的不可能是负数,正确,不符合题意;C. 0的平方根只有0,故原说法错误,符合题意;D. 数的立方根只有一个,正确,不符合题意;故选:C【考点】本题考查
5、了平方根和立方根的性质,解题关键是掌握平方根和立方根的性质2、B【解析】【分析】根据无理数是无限不循小数,可得答案【详解】解:,是无理数,故选:B【考点】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数3、D【解析】【分析】先求出两个分式的乘积,然后根据分式的性质:分子和分母同时乘以或除以一个不为0的数,分式的值不变,进行求解即可【详解】解: ,故选D【考点】本题主要考查了分式的乘法和分式的化简,解题的关键在于能够熟练掌握相关知识进行求解4、A【解析】【分析】利用二次根式的乘除法则计算即可得到结果【详解】解:,故选:A【考点】本题主要考查了二次根式的乘除法,熟练掌握运算
6、法则是解题的关键5、D【解析】【分析】根据分式的加减乘除的运算法则进行计算即可得出答案【详解】解:A. ,计算错误,不符合题意;B. ,计算错误,不符合题意;C. ,计算错误,不符合题意;D. ,计算正确,符合题意;故选:D【考点】本题考查了分式的加减乘除的运算,熟练掌握运算法则是解题的关键二、多选题1、AB【解析】【分析】根据负整数指数幂,同底数幂的除法和含乘方的计算法则进行求解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意;故选AB【考点】本题主要考查了负整数指数幂,同底数幂的除法和含乘方的计算,解题的关键在于能够熟练
7、掌握相关计算法则2、ACD【解析】【分析】根据无理数的定义以及性质,对选项逐个判断即可【详解】解:A、无理数包含开方开不尽的数,选项说法错误,符合题意;B、无限不循环小数统称无理数,选项正确,不符合题意;C、带根号的数都是无理数,说法错误,比如,为有理数,符合题意;D、无限不循环小数是无理数,无限循环小数是有理数,选项错误,符合题意;故选ACD【考点】此题考查了无理数的定义以及性质,无限不循环小数是无理数,熟练掌握无理数的有关性质是解题的关键3、BCD【解析】【分析】解答此题根据二次根式的性质进行化简即可【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、 ,故此选项符合题意;D
8、、,故此选项符合题意;故选BCD【考点】本题主要考查了二次根式的化简,解答此题的关键是熟练掌握二次根式的基本运算法则4、BC【解析】【分析】直接利用二次根式的加减运算法则分别计算得出答案【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、,故此选项不符合题意;故选BC【考点】此题主要考查了二次根式的加减,正确掌握相关运算法则是解题关键5、BD【解析】【分析】根据最简二次根式的定义逐个判断即可【详解】解:A、,不是最简二次根式,不符合题意;B、是最简二次根式,符合题意;C、,不是最简二次根式,不符合题意;D、是最简二次根式,符合题意;故选BD【考点】本题考查
9、了最简二次根式的定义,满足以下两个条件的二次根式叫最简二次根式,被开方数中不含分母,也不含开得尽的因数或因式,能够熟记最简二次根式的定义是解题的关键三、填空题1、 #0.5 【解析】【分析】(1)由负整数指数幂的运算法则计算即可(2)由零指数幂的运算法则计算即可【详解】(1)(2)故答案为:,【考点】本题考查了负整数指数幂以及零指数幂的运算法则,即任何不等于0的数的0次幂都等于1;是由在,时转化而来的,也就是说当同底数幂相除时,若被除式的指数小于除式的指数,则转化成负指数幂的形式2、【解析】【分析】根据分式值为负的条件列出不等式求解即可【详解】解:0x-20,即故填:【考点】本题主要考查了分式
10、值为负的条件,根据分式小于零的条件列出不等式成为解答本题的关键3、【解析】【分析】先估算的大小,然后再比较无理数的大小即可【详解】解:,;故答案为:【考点】本题考查了实数的比较大小,无理数的估算,解题关键是正确掌握实数比较大小的法则4、【解析】【分析】由条件,先求出的值,再根据平方根的定义即可求出的值【详解】解:,故答案为:【考点】本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键5、300【解析】【分析】先设第一次的捐款人数是x人,根据两次人均捐款额恰好相等列出方程,求出x的值,再进行检验即可求出答案【详解】解:设第一次的捐款人数是x人,根据
11、题意得:,解得:x300,经检验x300是原方程的解,故答案为300【考点】此题考查了分式方程的应用,解题的关键是读懂题意,找出之间的等量关系,列出方程,解分式方程时要注意检验四、解答题1、(1);(2)答案见解析【解析】【分析】根据二次根式的运算法则即可求出答案【详解】解:(1)二次根式加减时不能将根号下的被开方数进行加减,故错误,故填;(2)原式=2=6=4【考点】本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型2、【解析】【分析】根据算术平方根的定义可得解不等式组,求出a,b,代入求值即可【详解】解:根据题意,得则,2,的算术平方根为【考点】本题考核
12、知识点:算术平方根,解不等式组理解算术平方根定义和解不等式组方法是关键3、【解析】【分析】先把除法化为乘法,再根据分式有意义的条件即可得到结果【详解】,x+20且x+40且x+30,解得:x2、3、4【考点】本题主要考查了分式有意义的条件,关键是注意分式所有的分母部分均不能为0,分式才有意义4、(1);(2)【解析】【分析】(1)先计算有理数的乘方,零次幂,负整数指数幂的运算,再计算乘法运算,最后计算加减,从而可得答案;(2)先计算多项式乘以多项式,单项式乘以多项式,再合并同类项即可.【详解】解:(1) (2) 【考点】本题考查的是零次幂与负整数指数幂的含义,整式的乘法运算,掌握零次幂与负整数
13、指数幂的含义及整式的乘法运算的运算法则是解题的关键.5、任务一:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;五;括号前是“”号,去掉括号后,括号里的第二项没有变号;任务二:;任务三:最后结果应化为最简分式或整式,答案不唯一,详见解析【解析】【分析】任务一:分式的通分是把异分母的分式化为同分母的分式,通分的依据是分式的基本性质,据此即可进行判断;根据分式的运算法则可知:第五步开始出现错误,然后根据去括号法则解答即可;任务二:根据分式的混合运算法则解答;任务三:可从分式化简的最后结果或通分时应注意的事项等进行说明【详解】解:任务一:以上化简步骤中,第三步是进
14、行分式的通分,通分的依据是分式的基本性质或填为分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;第五步开始出现错误,这一步错误的原因是括号前是“”号,去掉括号后,括号里的第二项没有变号;故答案为:五;括号前是“”号,去掉括号后,括号里的第二项没有变号;任务二:原式 任务三:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等【考点】本题考查了分式的加减运算,属于基础题型,熟练掌握运算法则、明确每一步计算的根据是解题的关键