1、人教版九年级数学上册第二十二章二次函数达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把函数的图象向右平移1个单位长度,平移后图象的函数解析式为()ABCD2、下列函数中,是二次函数的是()Ay6
2、x2+1By6x+1CyDy+13、在同一平面直角坐标系内,二次函数与一次函数的图象可能是()ABCD4、使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()ABCD5、如图所示,将一根长m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A正比例函数关系B一次函数关系C二次函数关系D反比例函数关系6、如图,在平面直角坐标系中,抛物线yax2+bx+c(a0)与x轴
3、交于点A(1,0),顶点坐标为(1,m),与y轴的交点在(0,4),(0,3)之间(包含端点),下列结论:abc0;4ac-b20;ac0;1a;关于x的方程ax2+bx+c+2m0没有实数根其中正确的结论有()A1个B2个C3个D4个7、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD8、在下列关于x的函数中,一定是二次函数的是( )Ay=x2By=ax2+bx+cCy=8xDy=x2(1+x)9、当函数 是二次函数时,的取值为()ABCD10、在“探索函数的系数,与图象的关系”活动中,老师给出了直角坐标系
4、中的四个点:,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、二次函数y=ax2+bx+c(a0)图象上部分点的坐标(x,y)对应值列表如下:x-3-2-101y-4-3-4-7-12则该图象的对称轴是_2、飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t在飞机着陆滑行中,最后4s滑行的距离是_m3、某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件经调查发现,这种生活用品的销售单价每提高1元,
5、其销售量相应减少4件,那么将销售价定为_元时,才能使每天所获销售利润最大4、在平面直角坐标系中,抛物线yx2的图象如图所示已知A点坐标为(1,1),过点A作AA1x轴交抛物线于点A1,过点A1作A1A2OA交抛物线于点A2,过点A2作A2A3x轴交抛物线于点A3,过点A3作A3A4OA交抛物线于点A4,依次进行下去,则点A2021的坐标为_5、抛物线图象与轴无交点,则的取值范围为;三、解答题(5小题,每小题10分,共计50分)1、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、直线
6、与直线交于点,当时,求值2、如图,矩形ABCD中,AB=6cm,BC=12cm. 点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速度向点C移动. 若M, N分别从A, B点同时出发,设移动时间为t (0t0抛物线yax2+bx+c(a0)的对称轴在y轴的右侧, 又抛物线yax2+bx+c(a0)的图象交y轴的负半轴, ,故正确,符合题意;抛物线yax2+bx+c(a0)的图象与x轴有两个交点,即,故错误,不符合题意;抛物线的顶点坐标为(1,m),与x轴的一个交点为A(-1,0)对称轴为x=1抛物线与x轴的另一个交点为(3,0)当x=3时,y=,a
7、c =0,故错误,不符合题意;当x=-1时,y=a-b+c=0,则c=-a+b, 由-4c-3,得-4-a+b-3,图象的对称轴为x=1,故b=-2a,得-4-3a-3,故1a正确,符合题意;y=ax2+bx+c的顶点为(1,m),即当x=1时y有最小值m而y=m-2和y=ax2+bx+c无交点,即方程ax2+bx+c=m-2无解,关于x的方程ax2+bx+c+2-m=0没有实数根,故正确,符合题意故选:C【考点】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征7、A【解析】【分析】先求出抛物线
8、的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考
9、查了二次函数的性质8、A【解析】【分析】根据二次函数的定义:y=ax2+bx+c(a0a是常数),可得答案【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A【考点】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数9、D【解析】【分析】根据二次函数的定义去列式求解计算即可【详解】函数 是二次函数,a-10,=2,a1,故选D【考点】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键10、A【解析】【分析】分四
10、种情况讨论,利用待定系数法,求过,中的三个点的二次函数解析式,继而解题【详解】解:设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;最大为,故选:A【考点】本题考查待定系数法求二次函数的解析式,是基础考点,难度较易,掌握相关知识是解题关键二、填空题1、【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴【详解】解:由表格可得,当x取-3和-1时,y值相等,该函数图象的对称轴为直线,故答案为:【考点】本题考查二次函数的性
11、质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答2、24【解析】【分析】先利用二次函数的性质求出飞机滑行20s停止,此时滑行距离为600m,然后再将t=20-4=16代入求得16s时滑行的距离,即可求出最后4s滑行的距离【详解】y=60t=(t-20)2+600,即飞机着陆后滑行20s时停止,滑行距离为600m,当t=20-4=16时,y=576,600-576=24,即最后4s滑行的距离是24m,故答案为24【考点】本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题3、11【解析】【分析】根据题意列出二次函数关系式,根据二次函数的性质即
12、可得到结论【详解】解:设销售单价定为元,每天所获利润为元,则,所以将销售定价定为11元时,才能使每天所获销售利润最大,故答案为11【考点】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答4、(-1011,10112)【解析】【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2021的坐标【详解】解:A点坐标为(1,1),直线OA为y=x,A1(-1,1),A1A2OA,直线A1A2为y=x+2,解得或,
13、A2(2,4),A3(-2,4),A3A4OA,直线A3A4为y=x+6,解,得或,A4(3,9),A5(-3,9),A2021(-1011,10112),故答案为(-1011,10112)【考点】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键5、【解析】【分析】根据题意和题目中的函数解析式,可以得到顶点的纵坐标小于0,然后代入数据计算即可【详解】解:抛物线图象与轴无交点,该抛物线开口向下,且,即: ,解之得:,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,明确题意,利用二次函数的性质解答是解答本题的关键三、解
14、答题1、(1);(2)的值为,【解析】【分析】(1)由直线BC求出B、C的坐标,再代入二次函数的解析式,求出b、c的值,得出二次函数的解析式;(2)用含有m的代数式表示点E和点F的坐标,用相似三角形对应边成比例的性质列方程,求出m的值.【详解】(1)直线的解析式点,点和在抛物线上,解得:二次函数的解析式为:(2)二次函数与轴交于点、点轴交直线于点点轴,轴,轴交直线于点,点点的坐标为,点的坐标为若点在原点右侧,如图1,则,即,解得:,;若点在原点左侧,如图2,则即,解得:,(舍去);综上所述,的值为,【考点】本题考查二次函数与几何的综合问题,熟练掌握二次函数的性质是本题的解题关键,解题时结合一次
15、函数的性质,利用相似三角形的性质列方程,灵活应用函数图像上点的坐标特征.2、(1)27(2) 【解析】【分析】(1)根据t秒时,M、N两点的运动路程,分别表示出AM、BM、BN、CN的长度,由SDMN=S矩形ABCDSADMSBMNSCDN进行列式即可得到S关于t的函数关系式,通过配方即可求得最小值;(2)当DMN为直角三角形时,由MDN90,分NMD或MND为90两种情况进行求解即可得.【详解】(1) 由题意,得AM=tcm,BN=2tcm,则BM=(6t)cm,CN=(122t)cm,SDMN=S矩形ABCDSADMSBMNSCDN,S=12612t(6t)2t6(122t)=t26t+3
16、6=(t3)2+27,t=3在范围0t6内,S的最小值为27cm2;(2) 当DMN为直角三角形时,MDN90,可能NMD或MND为90,当NMD=90时,DN2=DM2+MN2,(122t)2+62=122+t2+(6t)2+(2t)2,解得t=0或18,不在范围0t6内,不可能;当MND=90时,DM2=DN2+MN2,122+t2=(122t)2+62+(6t)2+(2t)2,解得t=或6,(6不在范围0t6内舍),S=(3)2+27=cm2.【考点】本题考查了二次函数的应用,涉及矩形的性质、三角形面积、二次函数的性质、勾股定理的应用等知识,熟练掌握和灵活应用相关知识是解题的关键.3、(
17、1);(2)当线下售价定为19元/件时,月利润总和最大,此时最大利润是7300元【解析】【分析】(1)由待定系数法求出y与x的函数关系式即可;(2)设线上和线下月利润总和为w元,则w=400(x-2-10)+y(x-10)=400x-4800+(-100x+2400)(x-10)=-100(x-19)2+7300,由二次函数的性质即可得出答案【详解】解:(1)因为y与x满足一次函数的关系,所以设y=kx+b.将点(12,1200),(13,1100)代入函数解析式得解得与的函数关系式为(2)设商家线上和线下的月利润总和为元,则可得=400(x-12)+(-100x+2400)(x-10)=-1
18、00x2+3800x-28800=,因为-1000,所以当x=19时,w有最大值,为7300,所以当线下售价定为19元/件时,月利润总和最大,此时最大利润是7300元【考点】本题考查了二次函数的应用、待定系数法求一次函数的解析式等知识;弄清题意,找准各量间的关系,熟练掌握二次函数的性质是解题的关键4、 (1)(2)【解析】【分析】(1)根据根与系数的关系求得x1+x2、x1x2,然后代入列出方程,通过解方程来求m的值;(2)把点(1,0)代入抛物线解析式,求得m的值(1)解:由题意得:x1+x2=-1,x1x2=-m,-1=-mm=1当m=1时,x2+x-1=0,此时=1+4m=1+4=50,
19、符合题意m=1;(2)解:图象可知:过点(1,0),当x=1,y=0,代入y=x2+x-m,得12+1-m=0m=2【考点】本题主要考查了抛物线与x轴的交点,根与系数的关系,解题的关键是掌握如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=-,x1x2=5、(1)y=2x28x+6;(2)点E(2,2)或(3,4);(3)存在,当点P坐标为(5,16)或(1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形【解析】【分析】(1)设抛物线解析式为:ya(x1)(x3),把点C坐标代入解析式,可求解;(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,
20、联立方程组可求点D坐标,可求SABD266,设点E(m,2m2),分两种情况讨论,利用三角形面积公式可求解;(3)分两种情况讨论,利用平行四边形的性质可求解【详解】解:(1)抛物线yax2+bx+c(a0)的图象经过A(1,0),B(3,0),设抛物线解析式为:ya(x1)(x3),抛物线ya(x1)(x3)(a0)的图象经过点C(0,6),6a(01)(03),a2,抛物线解析式为:y2(x1)(x3)2x28x+6;(2)y2x28x+62(x2)22,顶点M的坐标为(2,2),抛物线的顶点M与对称轴l上的点N关于x轴对称,点N(2,2),设直线AN解析式为:ykx+b,由题意可得:,解得
21、:,直线AN解析式为:y2x2,联立方程组得:,解得:,点D(4,6),SABD266,设点E(m,2m2),直线BE将ABD的面积分为1:2两部分,SABESABD2或SABESABD4,2(2m2)2或2(2m2)4,m2或3,点E(2,2)或(3,4);(3)若AD为平行四边形的边,以A、D、P、Q为顶点的四边形为平行四边形,ADPQ,xDxAxPxQ或xDxAxQxP,xP41+25或xP24+11,点P坐标为(5,16)或(1,16);若AD为平行四边形的对角线,以A、D、P、Q为顶点的四边形为平行四边形,AD与PQ互相平分,xP3,点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形【考点】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键