收藏 分享(赏)

2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx

上传人:a**** 文档编号:695271 上传时间:2025-12-13 格式:DOCX 页数:23 大小:545.98KB
下载 相关 举报
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第1页
第1页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第2页
第2页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第3页
第3页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第4页
第4页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第5页
第5页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第6页
第6页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第7页
第7页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第8页
第8页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第9页
第9页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第10页
第10页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第11页
第11页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第12页
第12页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第13页
第13页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第14页
第14页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第15页
第15页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第16页
第16页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第17页
第17页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第18页
第18页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第19页
第19页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第20页
第20页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第21页
第21页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第22页
第22页 / 共23页
2022年人教版九年级数学上册期中测评试题 A卷(详解版).docx_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、小明在研究抛物线(h为常数)时,得到如下结论,其中正确的是()A无论x取

2、何实数,y的值都小于0B该抛物线的顶点始终在直线上C当时,y随x的增大而增大,则D该抛物线上有两点,若,则2、如图,在中,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A1.6B1.8C2D2.63、如图,一次函数y=-3x+4的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D若矩形OCPD的面积为1时,则点P的坐标为()A(,3)B(,2)C(,2)和(1,1)D(,3)和(1,1)4、关于的一元二次方程的两根应为()AB,CD5、在下列关于x的函数中,一定是二次函数的是( )Ay=x2By=ax2+bx+cC

3、y=8xDy=x2(1+x)二、多选题(5小题,每小题4分,共计20分)1、如图所示,在一边靠墙(墙足够长)空地上,修建一个面积为672m2的矩形临时仓库,仓库一边靠墙,另三边用总长为76米的栅栏围成,若设栅栏AB的长为xm,则下列各方程中,不符合题意的是()Ax(76x)672Bx(762x)672Cx(762x)672Dx(76x)672 线 封 密 内 号学级年名姓 线 封 密 外 2、下列图形中,是中心对称图形的是()ABCD3、对于二次函数,下列说法不正确的是()A图像开口向下B图像的对称轴是直线C函数最大值为0D随的增大而增大4、已知抛物线(,是常数,)经过点,当时,与其对应的函数

4、值下列结论正确的是()ABCD关于的方程有两个不等的实数根5、下列关于x的方程没有实数根的是()Ax2-x10Bx2x10C(x-1)(x2)0D(x-1)210第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、在平面直角坐标系中,二次函数过点(4,3),若当0xa 时,y 有最大值 7, 最小值 3,则 a 的取值范围是_2、如图,在RtABC中,ACB90,点D为AB的中点,点P在AC上,且CP1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ当ADQ90时,AQ的长为_3、写出一个一元二次方程,使它有两个不相等的实数根_4、某商场销售一批名牌衬衫,平均

5、每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程_5、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为_四、解答题(5小题,每小题8分,共计40分)1、某宾馆共有80间客房宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x

6、(元/间)之间满足yx42(x168)若宾馆每天的日常运营成本为4000元,有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润? 线 封 密 内 号学级年名姓 线 封 密 外 2、解方程:(1)2x25x30;(2)x22x2x1;(3)x23x203、如图,平面直角坐标系中,ABC的三个顶点的坐标分别为A(1,2),B(2,4),C(4,1)(1)在平面直角坐标系中画出与ABC关于点P(1,0)成中心对称的ABC,并分别写出点

7、A,B,C的坐标;(2)如果点M(a,b)是ABC边上(不与A,B,C重合)任意一点,请写出在ABC上与点M对应的点M的坐标4、一个二次函数y=(k1)求k值5、已知二次函数()(1)求二次函数图象的对称轴;(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)在(2)的条件下,对直线下方二次函数图象上的一点,若,求点的坐标-参考答案-一、单选题1、C【解析】【分析】根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可【详解】解:A,当时,当时, ,故错误;B抛物线的顶点坐标为,当时,故错误;C抛物线开口向下,当时,y随

8、x的增大而增大,故正确;D抛物线上有两点,若,点A到对称轴的距离大于点B到对称轴的距离,故错误故选C【考点】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键2、A【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 由将ABC绕点A按顺时针旋转一定角度得到ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由B=60,可证得ABD是等边三角形,继而可得BD=AB=2,则可求得答案【详解】由旋转的性质可知,为等边三角形,故选A【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB3、D【解析】【分析】由点P在线段AB上可设点

9、P的坐标为(m,-3m+4)(0m),进而可得出OC=m,OD=-3m+4,结合矩形OCPD的面积为1,即可得出关于m的一元二次方程,解之即可得出m的值,再将其代入点P的坐标中即可求出结论【详解】解:点P在线段AB上(不与点A,B重合),且直线AB的解析式为y=-3x+4,设点P的坐标为(m,-3m+4)(0m),OC=m,OD=-3m+4矩形OCPD的面积为1,m(-3m+4)=1,m1=,m2=1,点P的坐标为(,3)或(1,1)故选:D【考点】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m的一元二次方程是解题的关键4、B【解析】【分析

10、】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可【详解】x23ax+a2=0,=(3a)24a2=a2,x=.所以x1=a,x2=a.故答案选B.【考点】本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.5、A【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据二次函数的定义:y=ax2+bx+c(a0a是常数),可得答案【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A【考点】本题考查了二次函数的定义,利用

11、二次函数的定义是解题关键,注意a是不等于零的常数二、多选题1、BCD【解析】【分析】本题可根据题意分别用x表示BC或AD的长,再根据面积公式列出方程即可【详解】解:设栅栏AB的长为xm,依题意得: ,而矩形面积 ,不符合题意的方程有BCD故选:BCD【点睛】考查一元二次方程的应用,解题的关键是读懂题目,找到题目中的等量关系,列方程即可2、BD【解析】【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,进而判断得出答案【详解】解:A此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不符合题意;B此图形旋转180后能与原图形重合,此图形是中心对称图形,

12、故此选项符合题意;C此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不合题意;D此图形旋转180后能与原图形重合,此图形是中心对称图形,故此选项符合题意故选:BD【点睛】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形3、ACD【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确【详解】解:二次函数,a20,该函数的图象开口向上,故选项A错误,图象的对称轴是直线x1,故选项B正确,函数的最小值是y0,故选项C错误,当x1时随的

13、增大而增大,故选项D错误,故选:A,C,D【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答4、BCD【解析】【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】抛物线(是常数,)经过点(-1,-1),当时,与其对应的函数值,c=10,a-b+c= -1,4a-2b+c1,a-b= -2,2a-b0,2a-a-20,a20,b=a+20,abc0,故A错误;b=a+2,a2,c=1,故B正确;a+b+c=a+a+2+1=2a+3,a2,2a4,2a+34+37,即,故C正确;,=0,有两个不等的实数根,故D正确

14、故选:BCD【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键5、ABD【解析】【分析】将选项中的式子转换为一元二次方程一般式,根据根的判别式可得结果【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:A、x2-x10,方程没有实数根,此选项符合题意;B、x2x10,方程没有实数根,此选项符合题意;C、(x-1)(x2)0,方程有实数根,此选项不符合题意;D、原式整理为:,方程没有实数根,此选项符合题意;故选:ABD【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,

15、方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根三、填空题1、2a4【解析】【分析】先求得抛物线的解析式,根据二次函数的性质以及二次函数图象上点的坐标特征即可得到a的取值范围【详解】解:二次函数y=-x2+mx+3过点(4,3),3=-16+4m+3,m=4,y=-x2+4x+3,y=-x2+4x+3=-(x-2)2+7,抛物线开口向下,对称轴是x=2,顶点为(2,7),函数有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,当0xa时,y有最大值7,最小值3,2a4故答案为:2a4【考点】本题考查了待定系数法求二次函数的解析式,二

16、次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键2、或#或【解析】【分析】连接,根据题意可得,当ADQ90时,分点在线段上和的延长线上,且,勾股定理求得即可【详解】如图,连接,在RtABC中,ACB90, 线 封 密 内 号学级年名姓 线 封 密 外 根据题意可得,当ADQ90时,点在上,且,如图,在中,在中,故答案为:或【考点】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键3、x2+x10(答案不唯一)【解析】【分析】这是一道开放自主题,只要写出的方程的0就可以了【详解】解:比如a1,b1,c1,b24ac1+450,方程为x2+x10故答案

17、为:x2+x10(答案不唯一)【考点】本题考查了一元二次方程根的判别式,掌握 “根的判别式大于0,方程有两个不相等的实数根”是解题的关键4、【解析】【分析】设每件衬衫降价x元,根据每件衬衫每降价1元,商场平均每天可多售出2件可得销售量为,则每件衬衫的利润为,根据销售量乘以每件衬衫的利润等于1200元,列出一元二次方程即可【详解】解:设每件衬衫降价x元,根据题意得,故答案为:【考点】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键5、1或【解析】【分析】先运用根的判别式求得k的取值范围,进而确定k的值,得到抛物线的解析式,再根据折叠得到新图像的解析式,可求出函数图象与x轴的交点

18、坐标,画出函数图象,可发现,若直线与新函数有3个交 线 封 密 内 号学级年名姓 线 封 密 外 点,可以有两种情况:过交点(-1,0),根据待定系数法可得m的值;不过点(一1,0),与相切时,根据判别式解答即可【详解】解:函数与x轴有两个交点,解得,当k取最小整数时,抛物线为,将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,所以新图象的解析式为(或):因为为的,所以它的图象从左到右是上升的,当它与新图象有3个交点时它一定过,把代入得所以,与相切时,图象有三个交点,解得故答案为:1或【考点】本题主要考查了二次函数图象与几何变换、待定系数法求函数解析式等

19、知识点,掌握分类讨论和直线与抛物线相切时判别式等于零是解答本题的关键四、解答题1、(1)zx+122(x168);(2)应将房间定价确定为260元时,获得利润最大,最大利润为8767元【解析】【分析】(1)入住房间z(间)等于80减去每天的房间空闲数,列式并化简即可;(2)设利润为w元,由题意得w关于x的二次函数关系式,根据二次函数的对称性及问题实际可得答案【详解】解:(1)由题意得:z80(x42)x+122,入住房间z(间)与定价x(元/间)之间关系式为zx+122(x168);(2)设利润为w元,由题意得:w(x+122)x36(x+122)4000x2+131x8392, 线 封 密

20、内 号学级年名姓 线 封 密 外 当x262时,w最大,此时z56.5非整数,不合题意,x260或264时,w最大,让客人得到实惠,x260,w最大2602+13126083928767,应将房间定价确定为260元时,获得利润最大,最大利润为8767元【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系、熟练掌握二次函数的性质是解题的关键2、 (1)x1,x23(2)x12,x22(3)x11,x22【解析】【分析】(1)直接用公式法求解;(2)用配方法求解;(3)用因式分解法求解(1)解:a2,b5,c3,b24ac(5)242(3)490,x,x1,x23;(2)解:移项,得x

21、24x1,配方,得x24x414,即(x2)23,两边开平方,得x2,即x2或x2,x12,x22;(3)解:原方程可变形为(x1)(x2)0,x10或x20,x11,x22【点睛】本题考查一元二次方程解法,根据方程的特征,选择适当方法求解是解题的关键3、(1)ABC见解析,A(3,2),B(4,4),C(6,1);(2)M(2a,b)【解析】【分析】(1)分别作出A,B,C的对应点A、B、C,然后顺次连接可得ABC,再根据所作图形写出坐标即可(2)利用中点坐标公式计算即可【详解】解:(1)ABC如图所示,A(3,2),B(4,4),C(6,1); 线 封 密 内 号学级年名姓 线 封 密 外

22、 (2)设M(m,n),则有,m2a,nb,M(2a,b)【点睛】本题考查作图中心对称,解题的关键是熟练掌握中心对称的性质,正确找出对应点位置4、k=2【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数可得k2-3k+4=2,且k-10,再解即可【详解】由题意得:k23k+4=2,且k10,解得:k=2;【点睛】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量指数为2这个关键条件5、(1)直线x=1;(2);(3)或【解析】【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即

23、可解决问题;(3)先求出直线MN的解析式,然后设点的坐标为,过点作轴的垂线交直线于点,得到PQ的长度,根据三角形的面积公式,即可求出答案【详解】解:(1)二次函数(),该二次函数图象的对称轴是直线:;(2)该二次函数的图象开口向上,对称轴为直线,当时,取得最大值,即,得:,该二次函数的表达式为:,即点的坐标为(3)设直线的解析式为,则,解得:, 线 封 密 内 号学级年名姓 线 封 密 外 设直线的解析式为:,设点的坐标为,过点作轴的垂线交直线于点,如图则点的坐标是,解得:,点的坐标是或【点睛】本题考查二次函数的性质,一次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1