1、京改版八年级数学上册第十二章三角形专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)
2、作射线,则就是的平分线用下面的三角形全等的判定解释作图原理,最为恰当的是()ABCD2、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或63、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD4、如图,的角平分线交于点,若,则的度数()ABCD5、如图,将沿翻折,三个顶点恰好落在点处若,则的度数为()ABCD6、如图,在中,的周长10,和的平分线交于点,过点作分别交、于、,则的长为()A10B6C4D不确定7、如图,在ABC中,ABC90,AB3,BC1,AB在数轴上,以点A为圆心,AC长为半径作弧,交数轴的正半轴于点M,则M表示的数为()A2.1B1CD1
3、8、如图,按以下步骤进行尺规作图:(1)以点为圆心,任意长为半径作弧,交的两边,分别于,两点;(2)分别以点,为圆心,大于的长为半径作弧,两弧在内交于点;(3)作射线,连接,下列结论错误的是()A垂直平分BCD9、如图,在中,H是高MQ和NR的交点,且MQ=NQ,已知PQ5,NQ9,则MH的长为()A3B4C5D610、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共
4、计20分)1、如图,在中,的中垂线交于点,交于点,已知,的周长为22,则_2、如图,ABCDBE,ABC的周长为30,AB9,BE8,则AC的长是_3、若一个三角形的三边长分别为5,12,13,则此三角形的最长边上的高为_4、如图,在ABC中,AB=5,AC=13,BC边上的中线AD=6,则ABD的面积是_5、如图,直线,点在直线上,点在直线上,则_三、解答题(5小题,每小题10分,共计50分)1、如图,点A,F,E,D在一条直线上,AFDE,CFBE,ABCD求证BECF2、在数轴上作出表示的点(保留作图痕迹,不写作法)3、如图(1),AB4cm,ACAB,BDAB,ACBD3cm点P在线段
5、AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动它们运动的时间为t(s)(1)若点Q的运动速度与点P的运动速度相等,当t1时,ACP与BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“ACAB,BDAB”改为“CABDBA60”,其他条件不变设点Q的运动速度为xcm/s,是否存在实数x,使得ACP与BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由4、如图,中,的垂直平分线分别交,于点,且求证:;若,求的长5、已知:如图,点A、B、C、D在一条直线上,(1)求证:;(2)若,求的度数-参考答案-
6、一、单选题1、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键2、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6
7、故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答3、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键4、A【解析】【分析】法一:延长PC交BD于E,设AC、PB交于F,根据三角形的内角和定理得到AABFAFBPPCFPFC180推出PPCFAABF,根据三角形的外角性质得到PPBEPED,推出PPBEPCDD,根据PB、PC是角平分线得到PCFPCD
8、,ABFPBE,推出2PAD,代入即可求出P法二:延长DC,与AB交于点E设AC与BP相交于O,则AOBPOC,可得PACDAABD,代入计算即可【详解】解:法一:延长PC交BD于E,设AC、PB交于F,AABFAFBPPCFPFC180,AFBPFC,PPCFAABF,PPBEPED,PEDPCDD,PPBEPCDD,2PPCFPBEADABFPCD,PB、PC是角平分线PCFPCD,ABFPBE,2PADA48,D10,P19法二:延长DC,与AB交于点EACD是ACE的外角,A48,ACDAAEC48AECAEC是BDE的外角,AECABDDABD10,ACD48AEC48ABD10,整
9、理得ACDABD58设AC与BP相交于O,则AOBPOC,PACDAABD,即P48(ACDABD)19故选A.【考点】本题主要考查对三角形的内角和定理,三角形的外角性质,对顶角的性质,角平分线的性质等知识点的理解和掌握,能熟练地运用这些性质进行计算是解此题的关键5、D【解析】【分析】根据翻折变换前后对应角不变,故B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,进而求出1+2的度数【详解】解:将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,HOD+EOF+HOG=A+B+C=
10、180,1+2=360-180=180,1=40,2=140,故选:D【考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出HOD+EOF+HOG=A+B+C=180是解题关键6、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO = DB和EO=EC,从而得出DE=DBEC,然后根据的周长即可求出AB.【详解】解:OBC=DOBBO平分OBC=DBODOB=DBODO = DB同理可证:EO=ECDE=DOEO= DBEC,的周长10,ADAEDE=10ADAEDBEC =10ABAC=10AB=10AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定
11、义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.7、B【解析】【分析】先根据勾股定理求出AB的长,进而可而出结论【详解】ABC中,B=90,AB=3,BC=1,AC=A点表示1,M点表示1故选:B【考点】本题考查勾股定理及实数与数轴,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键8、D【解析】【分析】利用全等三角形的性质以及线段的垂直平分线的判定解决问题即可【详解】解:由作图可知,在OCD和OCE中,OCDOCE(SSS),DCO=ECO,1=2,OD=OE,CD=CE,OC垂直平分线段DE,故A,B,C正确,没有条件能证明
12、CE=OE,故选:D【考点】本题考查了作图-基本作图,全等三角形的判定和性质,线段的垂直平分线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题9、B【解析】【分析】先证明,再由全等三角形的性质可得PQ=QH=5,根据MQ=NQ=9,即可得到答案【详解】解:MQPN,NRPM,NQHNRPHRM90,RHMQHN,PMHHNQ,在和中,(ASA),PQQH5,NQMQ9,MHMQHQ954,故选:B【考点】本题考查全等三角形的判定和性质,解题的关键是推理证明三角形的全等三角形,找到边与边的关系解决问题10、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及
13、三角形内角和与对顶角,可判断正确;证明AFMBAD(AAS),得出FM=AD,FAM=ABD,则正确,同理ANGCDA,得出NG=AD,则FM=NG,证明FMEGNE(AAS)可得出结论正确【详解】解:BAF=CAG=90,BAF+BAC=CAG+BAC,即CAF=GAB,又AB=AF=AC=AG,CAFGAB(SAS),BG=CF,故正确;FACBAG,FCA=BGA,又BC与AG所交的对顶角相等,BG与FC所交角等于GAC,即等于90,BGCF,故正确;过点F作FMAE于点M,过点G作GNAE交AE的延长线于点N,FMA=FAB=ADB=90,FAM+BAD=90,FAM+AFM=90,B
14、AD=AFM,又AF=AB,AFMBAD(AAS),FM=AD,FAM=ABD,故正确,同理ANGCDA,NG=AD,FM=NG,FMAE,NGAE,FME=ENG=90,AEF=NEG,FMEGNE(AAS)EF=EG故正确故选:D【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识熟练掌握全等三角形的判定与性质是解题的关键二、填空题1、12【解析】【分析】由的中垂线交于点,可得再利用的周长为22,列方程解方程可得答案【详解】解: 的中垂线交于点, ,的周长为22, 故答案为:【考点】本题考查的是线段的垂直平分线的性质,掌握线段的垂
15、直平分线的性质是解题的关键2、13【解析】【分析】根据全等三角形的性质求出BC,根据三角形的周长公式计算,得到答案【详解】解:ABCDBE,BE8,BCBE8,ABC的周长为30,AB+AC+BC30,AC30ABBC13,故答案为:13【考点】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形的性质3、【解析】【分析】首先根据三角形的三边长证明三角形是直角三角形,再根据直角三角形的面积公式计算出斜边上的高即可【详解】,此三角形是直角三角形,设最长边上的高为h,由三角形面积得:,解得:故答案为:【考点】此题主要考查了勾股定理逆定理,以及直角三角形的面积计算,关键是熟练掌握勾股定理的逆定理
16、:如果三角形的三边长,b,c满足,那么这个三角形就是直角三角形4、15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明ABDCED,所以CE=AB,再利用勾股定理的逆定理证明CDE是直角三角形,即ABD为直角三角形,进而可求出ABD的面积【详解】解:延长AD到点E,使DE=AD=6,连接CE,AD是BC边上的中线,BD=CD,在ABD和CED中,ABDCED(SAS),CE=AB=5,BAD=E,AE=2AD=12,CE=5,AC=13,CE2+AE2=AC2,E=90,BAD=90,即ABD为直角三角形,ABD的面积=ADAB=15故答案为15【考点】本题考查了全等三角形的
17、判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形5、【解析】【分析】利用等腰三角形的性质得到C=4=,利用平行线的性质得到1=3=,再根据三角形内角和定理即可求解【详解】如图,延长CB交于点D,AB=BC,C=,C=4=,1=,1=3=,C +3+2+4 =,即故答案为:【考点】本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等三、解答题1、证明见解析【解析】【分析】根据线段的和差关系可得AEDF,根据平行线的性质可得DA,CFDBEA,利用ASA可证明ABEDCF,根据全等三角形的性质即可
18、得结论【详解】AFDE,AFEFDEEF,即AEDF,AB/CD,DA,CF/BE,CFDBEA,在ABEDCF中,ABEDCF,BECF【考点】本题考查平行线的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键2、作图见解析.【解析】【详解】试题分析: 因为5=1+4,所以只需作出以1和2为直角边的直角三角形,则其斜边的长即是然后以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可试题解析:如图,过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.3、(1)全等,理由见详解;PCPQ,理由见解析;(2)存在,或【解析
19、】【分析】(1)利用SAS证得ACPBPQ,得出ACP=BPQ,进一步得出APC+BPQ=APC+ACP=90得出结论即可;(2)由ACPBPQ,分两种情况:AC=BP,AP=BQ,AC=BQ,AP=BP,建立方程组求得答案即可【详解】解:(1)当时,又,在和中,即线段与线段垂直(2)若,则,则,解得:;若,则,则,解得:;综上所述,存在或使得与全等【考点】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等在解题时注意分类讨论思想的运用4、(1)见解析;(2)4【解析】【分析】(1)连接CD,根据中垂线的性质可得CD=BD,从而结合题意运用勾股定理得逆定理即可证明;
20、(2)根据题意先求出AD,BD,再由(1)的结论在中运用勾股定理计算即可【详解】证明:连接的垂直平分线分别交,于点,是直角三角形,且解:,【考点】本题考查中垂线的性质,勾股定理及其逆定理,理解勾股定理的逆定理和中垂线的性质是解题关键5、(1)见解析;(2)60【解析】【分析】(1)首先利用平行线的性质得出,A=FBD,根据AB=CD即可得出AC=BD,进而得出EACFBD即可;(2)根据全等三角形的性质和三角形内角和解答即可【详解】证明:(1)EAFB,A=FBD,AB=CD,AB+BC=CD+BC,即AC=BD,在EAC与FBD中,EACFBD(SAS)(2)EACFBD,ECA=D=80,A=40,E=180-40-80=60,答:E的度数为60【考点】此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等根据已知得出EACFBD是解题关键