1、京改版八年级数学上册第十二章三角形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,按以下步骤进行尺规作图:(1)以点为圆心,任意长为半径作弧,交的两边,分别于,两点;(2)分别以点,为圆心,
2、大于的长为半径作弧,两弧在内交于点;(3)作射线,连接,下列结论错误的是()A垂直平分BCD2、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D803、下列电视台标志中是轴对称图形的是()ABCD4、观察下列作图痕迹,所作线段为的角平分线的是()ABCD5、如图,在中,则的长为()ABCD6、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A1B2C7D87、已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为()A7B8C9D108、如图,矩形ABCD中,对角线
3、AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()ABC10D89、如图,ACD是ABC的外角,CE平分ACD,若A=60,B=40,则ECD等于()A40B45C50D5510、如图,ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将ABC分为三个三角形,则SABO:SBCO:SCAO等于()A1:1:1B1:2:3C2:3:4D3:4:5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,的中垂线交于点,交于点,已知,的周长为22,则_2、如图,在中,按以下步骤作图:以点B为圆心,任意长为半径作弧,分别
4、交AB、BC于点D、E分别以点D、E为圆心,大于的同样长为半径作弧,两弧交于点F作射线BF交AC于点G如果,的面积为18,则的面积为_3、在ABC中,AB=AC,点D在BC上(不与点B,C重合)只需添加一个条件即可证明ABDACD,这个条件可以是_(写出一个即可)4、如图,在中,点,都在边上,若,则的长为_.5、在中,若两直角边,满足,则斜边的长度是_三、解答题(5小题,每小题10分,共计50分)1、如图,BCAD,垂足为点C,A = 27,BED = 44 求:(1)B的度数;(2)BFD的度数2、如图,在RtABC中,ACB=90,A=40,ABC的外角CBD的平分线BE交AC的延长线于点
5、E(1)求CBE的度数;(2)过点D作DFBE,交AC的延长线于点F,求F的度数3、【教材呈现】如图是华师版七年级下册数学教材第76页的部分内容请根据教材提示,结合图,将证明过程补充完整【结论应用】(1)如图,在中,60,平分,平分,求的度数(2)如图,将的折叠,使点落在外的点处,折痕为若,则、满足的等量关系为 (用、的代数式表示)4、如图,点D是等边三角形ABC的边BC上一点,以AD为边作等边ADE,连接CE.(1)求证:;(2)若BAD=20,求AEC的度数. 5、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲
6、的形式进行宣传防控措施,如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为600米,假设宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?-参考答案-一、单选题1、D【解析】【分析】利用全等三角形的性质以及线段的垂直平分线的判定解决问题即可【详解】解:由作图可知,在OCD和OCE中,OCDOCE(SSS),DCO=ECO,1=2,OD=OE,CD=CE,OC垂直平分线段DE,故A,B,C正确,没有条件能证明CE=OE,故选:D【考点】本题考查了作图-
7、基本作图,全等三角形的判定和性质,线段的垂直平分线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题2、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键3、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分
8、能够互相重合,这个图形就叫做轴对称图形【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键4、C【解析】【分析】根据角平分线画法逐一进行判断即可【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此
9、之间的不同是解题切入点5、B【解析】【分析】根据等腰三角形性质求出B,求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长6、C【解析】【分析】如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,从而可得,再在中
10、,根据三角形的三边关系定理可得,从而可得,由此即可得出答案【详解】解:如图,设这个凸五边形为,连接,并设,在中,即,在中,即,所以,在中,所以,观察四个选项可知,只有选项C符合,故选:C【考点】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键7、C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长【详解】设第三边为x,根据三角形的三边关系,得:4-1x4+1,即3x5,x为整数,x的值为4三角形的周长为1+4+4=9故选C.【考点】此题考查了三角形的三边关系关键是正确确定第三边的取值范围8、A
11、【解析】【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明AOFCOE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可【详解】解:如图,连结AE,设AC交EF于O,依题意,有AOOC,AOFCOE,OAFOCE,所以,OAFOCE(ASA),所以,ECAF5,因为EF为线段AC的中垂线,所以,EAEC5,又BE3,由勾股定理,得:AB4,所以,AC【考点】本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.9、C【解析】【分析】根据三角形外角性质求出ACD,根据角平分线定义求出即可【详解】A=60,B=
12、40,ACD=A+B=100,CE平分ACD,ECD=ACD=50,故选C【考点】本题考查了角平分线定义和三角形外角性质,熟记三角形外角性质的内容是解此题的关键10、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,故选:C【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键二、填空题1、12【解析】【分析】由的中垂线交于点,可得再利用的周长为22,列方程解方程可得答案【详解】解: 的中垂线交于点, ,的周长为22, 故答案为:【考点】本题考查的是线段的垂直平分线的性
13、质,掌握线段的垂直平分线的性质是解题的关键2、27【解析】【分析】由作图步骤可知BG为ABC的角平分线,过G作GHBC,GMAB,可得GM=GH,然后再结合已知条件和三角形的面积公式求得GH,最后运用三角形的面积公式解答即可【详解】解:由作图作法可知:BG为ABC的角平分线过G作GHBC,GMABGM=GH,故答案为27【考点】本题考查了角平分线定理和三角形面积公式的应用,通过作法发现角平分线并灵活应用角平分线定理是解答本题的关键3、BAD=CAD(或BD=CD)【解析】【分析】证明ABDACD,已经具备 根据选择的判定三角形全等的判定方法可得答案【详解】解: 要使 则可以添加:BAD=CAD
14、,此时利用边角边判定:或可以添加: 此时利用边边边判定:故答案为:BAD=CAD或()【考点】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键4、9.【解析】【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为ABC是等腰三角形,所以有AB=AC,BAD=CAE,ABD=ACE,所以ABDACE(ASA),所以BD=EC,EC=9.【考点】此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.5、13【解析】【分析】利用非负数的和为0,求出a与b的值,再利用勾股定理求即可【详解】解:,在中,由勾股定理得c=故答案为:13【考点】本
15、题考查非负数的性质,勾股定理,掌握非负数的性质,勾股定理是解题关键三、解答题1、(1)63;(2)107【解析】【分析】(1)根据垂直的定义可得,进而根据三角形内角和定理即可求得;(2)根据三角形的外角的性质即可求得【详解】解:(1) BCAD,A = 27,(2)BED = 44,【考点】本题考查了三角形的内角和定理与三角形的外角性质,掌握以上知识是解题的关键2、 (1) 65;(2) 25【解析】【分析】(1)先根据直角三角形两锐角互余求出ABC=90A=50,由邻补角定义得出CBD=130再根据角平分线定义即可求出CBE=CBD=65;(2)先根据直角三角形两锐角互余的性质得出CEB=9
16、065=25,再根据平行线的性质即可求出F=CEB=25【详解】(1)在RtABC中,ACB=90,A=40,ABC=90A=50,CBD=130BE是CBD的平分线,CBE=CBD=65;(2)ACB=90,CBE=65,CEB=9065=25DFBE,F=CEB=25【考点】本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义掌握各定义与性质是解题的关键3、教材呈现:见解析;(1)120;(2)【解析】【分析】【教材呈现】利用两直线平行,同位角相等,内错角相等,把三角形三个内角转化成一个平角,从而得证【结论应用】(1)利用角平分线的性质得出两个底角
17、之和,从而求出P度数(2)根据四边形BCFD内角和为360,分别表示出各角得出等式即可【详解】解:教材呈现:CDBA,1ACD3+ACD+DCE180,结论应用:(1)BP平分,CP平分, (2),在ABC中,又四边形BCDF内角和为360,【考点】本题考查平行线的性质,角平分线的定义,三角形内角和定理,翻折等知识,根据翻折前后对应角相等时解题的关键4、(1)见解析;(2)100【解析】【分析】(1)根据ADE与ABC都是等边三角形,得到AC=AB,AE=AD,DAE=BAC=60,从而得到DAE+CAD=BAC+CAD,即CAE=BAD,利用SAS证得ABDACE;(2)由ABDACE,得到
18、ACE=B=60,BAD=CAE=20,再由三角形内角和为180即可求出AEC的度数【详解】(1)证明:ADE与ABC都是等边三角形,AC=AB,AE=AD,DAE=BAC=60,DAE+CAD=BAC+CAD,即CAE=BAD,在CAE与BAD中,ABDACE(SAS);(2)ABDACE,ACE=B=60,BAD=CAE=20,AEC=180-60-20=100【考点】此题考查全等三角形的判定与性质及等边三角形的性质,根据等边三角形中隐含的条件可以得到证明三角形全等的一些条件是解题关键5、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传【解析】【分析】(1)直接比较村庄到公路的距离和广播宣传距离即可;(2)过点作于点,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间【详解】解:(1)村庄能听到宣传,理由:村庄到公路的距离为600米1000米,村庄能听到宣传;(2)如图:过点作于点,假设当宣讲车行驶到点开始影响村庄,行驶点结束对村庄的影响,则米,米,(米),米,影响村庄的时间为:(分钟),村庄总共能听到8分钟的宣传【考点】本题主要考查了垂线的性质,勾股定理,仔细审题获取相关信息合理作出图形是解题的关键