1、高一数学试题参考答案一、选择题(本题共小题,每小题分,共分,在每小题给出的四个选项中,第题只有一项符合题目要求,题有多项符合要求,全部选对得分,选对但不全的,得分,有选错的得分)B D B C A C A D D B AD AC ABD二、填空题(本大题共个小题,每小题分,共分),三、解答题(本大题共小题,分,解答题应写出文字说明、证明过程或演算步骤)解:()ab ,分又a,b,cosa,b ab|a|b|,a,b分()|a|,|b|分(ab)babb分()|ab|(ab)分aabb分分解:()已知(ab)cosCccosB可化为(sinAsinB)cosCsinCcosB,分整理得sinAc
2、osCsinBcosCsinCcosBsin(BC)sinA,分A,sinA,cosC,又C,C分高一数学试题答案 第页(共页)()因为C,所以sin(),又,则,分得cos()sin(),分所以coscos()cos()cossin()sin分 分解:()若x,g(x)恒成立,即只须g()m(m)g()m(m),分解得m分()当f(x)g(x),即 m(xm)(xm)因为 m,所以原不等式可以转化为(xm)(xm)分令(xm)(xm),则xm或xm分(m)(m)(m)(m);分m时,mm,不等式解为xm或xm分m时,mm,不等式解为xm或xm分综上,当 m时,不等式解集为x|xm或xm当m时
3、,不等式解集为x|xm或xm分解:()设等差数列an的公差为da,a,a 成等比数列,aaa分即(d)(d)(d)解得d或d(舍)分an(n)n分高一数学试题答案 第页(共页)()bnanan nnnn分TnnnTn(n)nnn()Tnnnn分n nnnnn(n)n分Tn(n)n分()在ABO 中,OAkm,OBxkm,AOB,分由余弦定理得:ABOAOBOAOBcos,分xx()()分即x x解得:x 分x,x 即OB 长度的取值范围是,分()依题意得,直线 MN 与圆O 相切,设切点为C,连接OC,则OCMN分设OMa,ONb,MNc,在OMN 中,MNOCOMONsin分 c ab,即c
4、ab分由余弦定理得,cababcosab ababab,c()ab分c()c,解得c 高一数学试题答案 第页(共页)当且仅当ab 时,c取得最小值 分所以当 M,N 与点O 的距离均为 km 时,M,N 两点之间的距离最短,最短距离为 km分解:()n时,(n)SnnSnn(n),Snn Snn,分Snn(Snn),分Snn 是首项为S,公比为的等比数列,Snn n,得Snnnn,分当n时,anSnSn(nnn)(n)n(n)(n)n分当n时a也适合上式,分所以an(n)n分()当n时,bnannnnnn,又b也适合上式,bnn分bnn(nn),分bbbn()()(nn)(n)nn,bbb分高一数学试题答案 第页(共页)