1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合复习试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、当0x3,函数yx2+4x+5的最大值与最小值分别是()A9,5B8
2、,5C9,8D8,42、对于函数的图象,下列说法不正确的是()A开口向下B对称轴是直线C最大值为D与轴不相交3、从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是ABCD14、下列各式中表示二次函数的是()Ayx2+By2x2CyDy(x1)2x25、若实数满足,则的值是( )A1B-3或1C-3D-1或3二、多选题(5小题,每小题4分,共计20分)1、二次函数y=ax2+bx+c(a0)的顶点坐标为(-1,n),其部分图象如图所示下列结论正确的是()ABC若,是抛物线上的两
3、点,则D关于x的方程无实数根2、运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567h08141820201814 线 封 密 内 号学级年名姓 线 封 密 外 下列结论正确的是()A足球距离地面的最大高度为20mB足球飞行路线的对称轴是直线C足球被踢出9s时落地D足球被踢出1.5s时,距离地面的高度是11m3、在图所示的4个图案中不包含图形的旋转的是()ABCD4、下列命题正确的是()A菱形既是中心对称图形又是轴对称图形B的算术平方根是5C如果一个多边形的
4、各个内角都等于108,则这个多边形是正五边形D如果方程有实数根,则实数5、如图,已知抛物线将该抛物线在x轴及x轴下方的部分记作C1,将C1沿x轴翻折构成的图形记作C2,将C1和C2构成的图形记作C3关于图形C3,给出的下列四个结论,正确的是()A图形C3恰好经过4个整点(横、纵坐标均为整数的点)B图形C3上任意一点到原点的最大距离是1C图形C3的周长大于2D图形C3所围成区域的面积大于2且小于第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、写出一个满足“当时,随增大而减小”的二次函数解析式_2、若关于x的一元二次方程的根的判别式的值为4,则m的值为_3、二次函数yax2
5、+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_4、若代数式有意义,则x的取值范围是 _5、一个圆锥的底面半径r6,高h8,则这个圆锥的侧面积是_四、解答题(5小题,每小题8分,共计40分)1、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧). 线 封 密 内 号学级年名姓 线 封 密 外 (1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内的整点个数;当“W区域”内恰有2个
6、整点时,结合函数图象,直接写出a的取值范围.2、已知关于x的一元二次方程(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根为,且,求m的值3、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.4、小明和小丽先后从A地出发同一直道去B地, 设小丽出发第时, 小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是(1)小丽出发时,小明离A地的距离为 (2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?5、在平面直角坐标系中,抛物线的对称轴为求的值及抛物线与轴的交点坐标;若抛物线与轴有交
7、点,且交点都在点,之间,求的取值范围-参考答案-一、单选题1、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答【详解】yx2+4x+5x2+4x4+4+5(x2)2+9,当x2时,最大值是9, 线 封 密 内 号学级年名姓 线 封 密 外 0x3,x0时,最小值是5,故选:A【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键2、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,与y轴肯定有交点,故D错误;故选择:D.【
8、考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.3、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)设扇形半径为r,圆心角为n,弧长是,则=,则,面积是,则=,则360240,则,则n=360024=150,故扇形的圆心角是,是假命题,则随机抽取一个是真命题的概率是,故选C.【考点】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.4、B【
9、解析】【分析】利用二次函数的定义逐项判断即可【详解】解:A、yx2+,含有分式,不是二次函数,故此选项错误;B、y2x2,是二次函数,故此选项正确; 线 封 密 内 号学级年名姓 线 封 密 外 C、y,含有分式,不是二次函数,故此选项错误;D、y(x1)2x22x+1,是一次函数,故此选项错误故选:B【考点】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键5、A【解析】【分析】设x2-3x=y将y代入原方程得到关于y的一元二次方程y2+2y-3=0即可,解这个方程求出y的值,然后利用根的判别式检验即可.【详解】设x2-3x=y将y代入原方程,得y2+2y-3=0,解之
10、得,y=1或y=-3当y=1时,x2-3x=1,=b2-4ac=(-3)2-41(-1)=9+4=130,有两个不相等的实数根,当y=-3时,x2-3x=-3,=b2-4ac=(-3)2-413=9=120,无解故y=1,即x2-3x=1故选A【考点】本题考查了换元法解一元二次方程及一元二次方程根的判别式,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.二、多选题1、CD【解析】【分析】根
11、据二次函数的性质及与x轴另一交点的位置,即可判定A;当x=2时,即可判定B;根据对称性及二次函数的性质,可判定C;根据平移后与x轴有无交点,可判定D【详解】解:由图象可知:该二次函数图象的对称轴为直线,b=2a,由图象可知:该二次函数图象与x轴的左侧交点在-3与-2之间,故与x轴的另一个交点在0与1之间,当x=1时,y0,即a+b+c0,3a+c0,即4a-2b+c0,故B错误;点关于对称轴对称的点的坐标为,即,在对称轴的左侧y随x的增大而增大,故,故C正确;该二次函数的顶点坐标为(1,n),将函数向下平移n+1个单位,函数图象与x轴无交点,方程无实数根,故D正确,故选:CD【考点】本题考查了
12、二次函数图象与性质,根据二次函数的图象判定式子是否成立,解题的关键是从图象中找到相关信息2、BC 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】由题意,抛物线经过(0,0),(9,0),所以可以假设抛物线的解析式为hat(t9),把(1,8)代入可得a1,可得ht2+9t(t4.5)2+20.25,由此即可一一判断【详解】解:由题意,抛物线的解析式为hat(t9),把(1,8)代入可得a1,ht2+9t(t4.5)2+20.25,足球距离地面的最大高度为20.25m,故A错误,抛物线的对称轴t4.5,故B正确,t9时,h0,足球被踢出9s时落地,故C正确,t1.5时,h11.2
13、5,故D错误正确的有,故选:BC【考点】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型3、AC【解析】【分析】根据中心对称与轴对称的概念,即可求解【详解】解:A、是轴对称图形,故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC【考点】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合是解题的关键4、AD【解析】【分析】利
14、用菱形的对称性、算术平方根的定义、多边形的内角和、一元二次方程根的判别式等知识分别判断后即可确定正确的选项【详解】解:A、菱形既是中心对称图形又是轴对称图形,故命题正确,符合题意;B、的算术平方根是,故命题错误,不符合题意;C、若一个多边形的各内角都等于108,各边也相等,则它是正五边形,故命题错误,不符合题意;D、对于方程,当a0时,方程,变为2x10,有实数根,当a0时,时,即,方程有实数根,综上所述,方程有实数根,则实数,故命题正确,符合题意故选:AD【考点】考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、多边形的内角和、 线 封 密 内 号学级年名姓 线 封 密
15、 外 一元二次方程根的判别式等知识,难度不大5、ABD【解析】【分析】画出图象C3,以及以O为圆心,以1为半径的圆,再作出O内接正方形,根据图象即可判断【详解】解:如图所示,A.图形C3恰好经过(1,0)、(1,0)、(0,1)、(0,1)4个整点,故正确;B.由图象可知,图形C3上任意一点到原点的距离都不超过1,故正确;C.图形C3的周长小于O的周长,所以图形C3的周长小于2,故错误;D.图形C3所围成的区域的面积小于O的面积,大于O内接正方形的面积,所以图形C3所围成的区域的面积大于2且小于,故正确;故选:ABD【考点】本题考查了二次函数的图象与几何变换,数形结合是解题的关键三、填空题1、
16、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边, y 随 x 增大而减小,得出a0,于是去a=-1,即可解答【详解】解:设抛物线的解析式为y=a(x-2)2,在抛物线对称轴的右边, y 随 x 增大而减小,a0,符合上述条件的二次函数均可,可取a=-1,则y=-(x-2)2 故答案为:y=-(x-2)2【考点】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质2、【解析】【分析】利用根的判别式,建立关于m的方程求得m的值【详解】关于x的一元二次方程的根的判别式的值为4, 线 封 密 内 号
17、学级年名姓 线 封 密 外 解得故答案为:【考点】本题考查了一元二次方程(a0)的根的判别式3、(1,0)【解析】【分析】根据表中数据得到点(-2,-3)和(0,-3)对称点,从而得到抛物线的对称轴为直线x=-1,再利用表中数据得到抛物线与x轴的一个交点坐标为(-3,0),然后根据抛物线的对称性就看得到抛物线与x轴的一个交点坐标【详解】x=-2,y=-3;x=0时,y=-3,抛物线的对称轴为直线x=-1,抛物线与x轴的一个交点坐标为(-3,0),抛物线与x轴的一个交点坐标为(1,0)故答案为(1,0)【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0
18、)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标也考查了二次函数的性质4、3x且x【解析】【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0【详解】解:若代数式有意义,必有,解得解移项得两边平方得整理得解得解集为3x且x故答案为:3x且x【考点】本题考查了二次根式的概念:式子(a0)叫二次根式,(a0)是一个非负数注意:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于05、60【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 利用圆锥的侧面积公式:,求出圆锥的母线即可解决问题【
19、详解】解:圆锥的母线,圆锥的侧面积=106=60,故答案为:60【考点】本题考查了圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的侧面积公式四、解答题1、(1)顶点P的坐标为;(2) 6个; ,【解析】【分析】(1)由抛物线解析式直接可求;(2)由已知可知A(0,2),C(2+ ,-2),画出函数图象,观察图象可得;分两种情况求:当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a= ,则a1;当a0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1a-【详解】解:(1)y=ax2-4ax+2a=a(x-2)2-2a, 顶点为(
20、2,-2a);(2)如图,a=2,y=2x2-8x+2,y=-2,A(0,2),C(2+,-2),有6个整数点;当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,; 当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,; 综上所述:,【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 2、(1)见详解;(2)【解析】【分析】(1)根据一元二次方程根的判别式可直接进行求解;(2)利用一元二次方程根与系数的关系可直接进行求解【详解】(1)证明:,不论m取何值,方程总有两个不相等的实
21、数根;(2)解:,方程有两个实数根为,解得:【考点】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键3、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1
22、、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程4、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可【详解】解(1)当x=0时,=2250,=2000-=2250-2000=250(m)
23、故答案为:250(2)设小丽出发第时,两人相距,则即其中因此,当时S有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是【考点】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题的关键5、 (1) a=-1;坐标为,;(2).【解析】【分析】(1)利用抛物线的对称轴方程得到x=-=-1,解方程求出a即可得到抛物线的解析式为y=-x2-2x;然后解方程-x2-2x=0可得到抛物线与x轴的交点坐标;(2)抛物线y=-x2-2x+m由抛物线y=-x2-2x上下平移|m|和单位得到,利用函数图象可得到当x=1时,y0,即-1-2+m0;当x=-1时,y0,即-1+2+m0,然后解两个不等式求出它们的公共部分可得到m的范围【详解】根据题意得,解得,所以抛物线的解析式为,当时,解得,所以抛物线与轴的交点坐标为,;抛物线抛物线由抛物线上下平移和单位得到,而抛物线的对称轴为直线,抛物线与轴的交点都在点,之间,当时,即,解得;当时,即,解得,的取值范围为【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数图象的几何变换