ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:4.03MB ,
资源ID:646780      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-646780-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(备战2017高考十年高考文数分项版(上海专版)专题10 立体几何(解析版)WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

备战2017高考十年高考文数分项版(上海专版)专题10 立体几何(解析版)WORD版含解析.doc

1、【2015/2016】1、【2015高考上海文数】若正三棱柱的所有棱长均为,且其体积为,则 .【答案】4【解析】依题意,解得.【考点定位】等边三角形的性质,正三棱柱的性质.【名师点睛】正三棱柱的底面是正三角形,侧棱垂直于底面.柱体的体积等于底面积乘以高.边长为的正三角形的面积为.2.【2015高考上海文数】(本题满分12分)如图,圆锥的顶点为,底面的一条直径为,为半圆弧的中点,为劣弧的中点.已知,求三棱锥的体积,并求异面直线与所成角的大小.【答案】所以异面直线与所成角的大小.【考点定位】圆锥的性质,异面直线的夹角.【名师点睛】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利

2、用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移计算异面直线所成的角通常放在三角形中进行3. 【2016高考上海文数】如图,在正方体ABCDA1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( ).(A)直线AA1 (B)直线A1B1 (C)直线A1D1 (D)直线B1C1【答案】D【考点】异面直线【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好地考查考生分析问题与解决问题的能力、空间想象能力等.4. 【2016高考上海文数】(本题满分12分)本题共有2个小题,第1个小题满分6分,

3、第2个小题满分6分.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图, 长为 ,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小. 【答案】(1),;(2)【解析】【考点】几何体的体积、空间角【名师点睛】此类题目是立体几何中的常见问题.解答此类试题时,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,将空间问题转化成平面问题.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.一基础题组1. 【2014上海,文8】在长方体中割去两个小长方体后的几何体的三视图如

4、图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积.2. 【2013上海,文10】已知圆柱的母线长为l,底面半径为r,O是上底面圆心,A、B是下底面圆周上两个不同的点,BC是母线,如图若直线OA与BC所成角的大小为,则_.【答案】【解析】由题知,.3. 【2012上海,文5】一个高为2的圆柱,底面周长为2.该圆柱的表面积为_【答案】6 4. 【2011上海,文7】若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积是_【答案】3【解析】5. 【2010上海,文6】已知四棱椎PABCD的底面是边长为6

5、的正方形,侧棱PA底面ABCD,且PA8,则该四棱椎的体积是_【答案】96 6. (2009上海,文5)如图,若正四棱柱ABCDA1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是_.(结果用反三角函数值表示)【答案】【解析】BCAD,CBD1等于异面直线BD1与AD所成的角.在RtBCD1中,BC=2,tanCBD1=.CBD1=.7. (2009上海,文6)若球O1、O2表面积之比,则它们的半径之比=_.【答案】2【解析】由,得.8. (2009上海,文8)若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是_.【答案】9. (200

6、9上海,文16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )【答案】B【解析】由于主视图是在几何体的正前方,用垂直于投影面的光线照射几何体而得到的投影,易知图形B符合题意.10. 【2007上海,文7】如图,在直三棱柱中,则异面直线与所成角的大小是 (结果用反三角函数值表示).【答案】【解析】11. 【2007上海,文16】(本题满分12分)在正四棱锥中,直线与平面所成的角为,求正四棱锥的体积.【答案】【解析】作平面,垂足为.连接,是正方形的中心,是直线与平面所成的角. ,. , .12. 【2006上海,文16】如果

7、一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是(A)48 (B) 18 (C) 24 (D)36【答案】D13. 【2005上海,文12】有两个相同的直三棱柱,高为,底面三角形的三边长分别为.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则的取值范围是_.【答案】【解析】两个相同的直三棱柱并排放拼成一个三棱柱或四棱柱,有三种情况四棱柱有一种,就是边长为的边重合在一起,表面积为24+28三棱柱有两种,边长为的边重合在一起,表面积为24+32边长为的边重合在一起,

8、表面积为24+36 两个相同的直三棱柱竖直放在一起,有一种情况表面积为12+48最小的是一个四棱柱,这说明二能力题组1. 【2014上海,文19】(本题满分12分)底面边长为2的正三棱锥,其表面展开图是三角形,如图,求的各边长及此三棱锥的体积.【答案】边长为4,体积为【解析】即,三棱锥是边长为2的正四面体如右图所示作图,设顶点在底面内的投影为,连接,并延长交于为中点,为的重心,底面,【考点】图象的翻折,几何体的体积2. 【2013上海,文19】如图,正三棱锥OABC的底面边长为2,高为1,求该三棱锥的体积及表面积【答案】体积为,表面积为3. 【2012上海,文19】如图,在三棱锥PABC中,P

9、A底面ABC,D是PC的中点已知,AB2,PA2.求:(1)三棱锥PABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示)【答案】(1) ; (2) 【解析】(1),三棱锥PABC的体积为.(2)取PB的中点E,连接DE,AE,则EDBC,所以ADE(或其补角)是异面直线BC与AD所成的角在ADE中,DE2,AD2,所以.因此,异面直线BC与AD所成的角的大小是.4. 【2011上海,文20】已知ABCDA1B1C1D1是底面边长为1的正四棱柱,高AA12,求:(1)异面直线BD与AB1所成角的大小(结果用反三角函数值表示);(2)四面体AB1D1C的体积【答案】(1)

10、 ; (2) 5. 【2010上海,文20】如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝骨架将圆柱底面8等分再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面)(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素)【答案】(1) 当半径r0.4(米)时,Smax0.481.51(平方米) ;(2) 参考解析 6. 【2008上海,文16】(本题满分12分)如图,在棱长为2的正方体中,E是BC1的中点求直线D

11、E与平面ABCD所成角的大小(结果用反三角函数值表示)【答案】7. 【2006上海,文19】(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分。在直三棱柱中,. (1)求异面直线与所成的角的大小;(2)若与平面S所成角为,求三棱锥的体积.【答案】(1)45; (2)【解析】(1) BCB1C1, ACB为异面直线B1C1与AC所成角(或它的补角) ABC=90, AB=BC=1, ACB=45, 异面直线B1C1与AC所成角为45. (2) AA1平面ABC,ACA1是A1C与平面ABC所成的角, ACA =45.ABC=90, AB=BC=1, AC=,AA1=.三棱锥A1-ABC的体积V=SABCAA1=.8. 【2005上海,文17】(本题满分12分)已知长方体中,M、N分别是和BC的中点,AB=4,AD=2,与平面ABCD所成角的大小为,求异面直线与MN所成角的大小.(结果用反三角函数值表示)【答案】arctanDB1C=arctan.即异面直线B1D与MN所成角的大小为arctan.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3