1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中考专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在同一直角坐标系中,一次函数ykx+1与二次函数yx2+k的大致
2、图象可以是()ABCD2、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC1D53、用配方法解方程时,原方程应变形为()ABCD4、若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是()A6B12C12或D6或5、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y随x的增大而减小,则a的取值范围是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下表时二次函数y=ax2+bx+c的x,y的部分对应值:则对于该函数的性质的判断中正确的是()A该二次函数有最大值B不等式y1的解集是x0或x2C方程y=ax2+bx+c的两个实数根分别位于x0
3、和2x之间D当x0时,函数值y随x的增大而增大2、在二次函数y=ax2+bx+c,x与y的部分对应值如下表:则下列说法中正确的是()x2023y8003A图象经过原点;B图象开口向下;C图象经过点(1,3);D当x0时,y随x的增大而增大;E方程ax2+bx+c=0有两个不相等的实数根 线 封 密 内 号学级年名姓 线 封 密 外 3、如图是二次函数图象的一部分,过点,对称轴为直线则错误的有()ABCD4、关于抛物线y=(x2)2+1,下列说法不正确的是( )A开口向上,顶点坐标(2,1)B开口向下,对称轴是直线x=2C开口向下,顶点坐标(2,1)D当x2时,函数值y随x值的增大而增大5、已知
4、二次函数yax2bxc(a0)的图象如图所示,下列结论正确的有( )A2ab0Babc0C4a2bc0Dac0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知二次函数的图象与x轴的两个交点A,B关于直线x=1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为_2、某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份如果这两种快餐每天销售总份数不
5、变,那么这两种快餐一天的总利润最多是_元3、已知方程x23x10的根是x1和x2,则x1x2x1x2_4、试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:_5、如图,在一块长为22m,宽为14m的矩形空地内修建三条宽度相等的小路(阴影部分),其余部分种植花草若花草的种植面积为240m2,则小路的宽为_m四、解答题(5小题,每小题8分,共计40分)1、已知二次函数()(1)求二次函数图象的对称轴;(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)在(2)的条件下,对直线下方二次函数图象上的一点,若,求点的
6、坐标2、如图,平面直角坐标系中,ABC的三个顶点的坐标分别为A(1,2),B(2,4),C(4,1)(1)在平面直角坐标系中画出与ABC关于点P(1,0)成中心对称的ABC,并分别写出点A,B,C的坐标;(2)如果点M(a,b)是ABC边上(不与A,B,C重合)任意一点,请写出在ABC上与点M对应的点M的坐标 线 封 密 内 号学级年名姓 线 封 密 外 3、在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少生产该产品每盒需要原料和原料,每盒还需其他成本9元市场调查发现:该产品每盒的售价是60元时
7、,每天可以销售500盒;每涨价1元,每天少销售10盒 (1)求每盒产品的成本(成本原料费其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润4、小明和小丽先后从A地出发同一直道去B地, 设小丽出发第时, 小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是(1)小丽出发时,小明离A地的距离为 (2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?5、如图,抛物线与轴交于两点,与轴交于点,且,.(1)求抛物线的
8、表达式;(2)点是抛物线上一点在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由-参考答案-一、单选题1、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论【详解】解:由yx2+k可知抛物线的开口向上,故B不合题意;二次函数yx2+k与y轴交于负半轴,则k0,k0,一次函数ykx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;
9、线 封 密 内 号学级年名姓 线 封 密 外 故选:A【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键2、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律3、D【解析】【分析】移项,配方,变形后即可得出选项【详解】解:x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D【考点】本题
10、考查了解一元二次方程,能够正确配方是解此题的关键4、D【解析】【分析】根据题意,先将方程的两根求出,然后对两根分别作为直角三角形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可【详解】解方程得,当3和4分别为直角三角形的直角边时,面积为;当4为斜边,3为直角边时根据勾股定理得另一直角边为,面积为;则该直角三角形的面积是6或,故选:D【考点】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键5、D【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据题意开口向上,且对称轴1,ab1,即可得到1
11、,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键二、多选题1、BC【解析】【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a0,即可判断A,D不正确,由图表可直接判断B,C正确【详解】解:当x=0时,y=-1;当x=2时,y=-1;当x=,y=;当x=,y=;二次函数y=ax2+bx+c的对称轴为直线x=1,x1时,y随x的增大而增大,x
12、1时,y随x的增大而减小a0即二次函数有最小值则A,D错误由图表可得:不等式y-1的解集是x0或x2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于-x0和2x之间;所以选项B,C正确,故选:BC【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值,理解图表中信息是本题的关键2、ACE【解析】【分析】根据二次函数图象的性质,结合表中数据,逐一分析判断即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:A、由表中数据可知,二次函数图象过,选项正确;B、函数图象过,则知对称轴为,当时,由表中数据知,y随x的增大而减小;当时,y随x的增大而增大,所以开口向上,选
13、项错误;C、因为函数的对称轴为,所以由函数对称性知,关于对称,选项正确;D、当时,y随x的增大而增大,选项错误;E、当y=0时,方程ax2+bx+c=0有两个不相等的实数根,选项正确故选:ACE【点睛】本题考查二次函数的图象性质,根据相关知识点解题是关键3、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断【详解】解:A、由抛物线的开口向下知a0,对称轴为直线,得2a=b,a、b同号,即b0;故本选项正确,不符合题意;B、对称轴为,得2a=b,2a+b=4a
14、,且a0,2a+b0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、3x12,根据二次函数图象的对称性,知当x=1时,y0;又由A知,2a=b,a+b+c0;b+b+c0,即3b+2c0;故本选项错误,符合题意故选:BD【点睛】本题主要考查了二次函数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键4、ABC【解析】【分析】由抛物线的解析式可求得其对称轴、开口方向、顶点坐标,进一步可得出其增减性,可得出答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:
15、y(x2)21,抛物线开口向上,对称轴为直线x2,顶点坐标为(2,1),A、B、C不正确;当x2时,y随x的增大而增大,D正确,故选:ABC【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y中,对称轴为直线xh,顶点坐标为(h,k)5、AD【解析】【分析】结合图象,根据函数的开口方向、与y轴的交点、对称轴的位置、和当x=-2时,x=-1时,对应y值的大小依次可判断【详解】解:根据开口方向可知,根据图象与y轴的交点可知,根据对称轴可知:,故A选项正确;abc0,故B选项错误;根据图象可知,当x=-2时,故C选项错误;根据图象可知,当x=-1时,故D选项正确故选:AD【点
16、睛】本题考查了二次函数图象判定式子的正负二次函数yax2bxc系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点确定,注意特殊点的函数值三、填空题1、y=x2+x【解析】【分析】利用抛物线与x轴的两个交点关于对称轴对称,求出A和B的坐标,再根据顶点坐标在y=2x的图象上,将x=1代入即可求出顶点坐标,设顶点式即可求出二次函数表达式.【详解】解:二次函数的图象与x轴的两个交点A,B关于直线x=1对称,且AB=6,A(-4,0),B(2,0),顶点横坐标为-1,又顶点在函数y=2x的图象上,将x=1代入,得y=2,即顶点坐标为(-1,-2)设二次函数解析式为y=a(x+1)2-2,代入A(-4,
17、0),得a=,即y=(x+1)2-2=x2+x【考点】本题考查了二次函数解析式的求法,中等难度,根据对称轴找到顶点坐标和与x轴的交点坐标是解题关键.2、1264 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据题意,总利润=快餐的总利润快餐的总利润,而每种快餐的利润=单件利润对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份据题意: 当的时候,W取到最大值1264,故最大利润为1264元故答案为:1264【考点】本题考查的是二次函数的应用,正确理解题意、通过具体
18、问题找到变化前后的关系是解题关键点3、2【解析】【分析】根据根与系数的关系可得出x1+x23、x1x21,将其代入x1+x2x1x2中即可求出结论【详解】解:方程x23x10的两个实数根为x1、x2,x1x23、x1 x21,x1x2x1x2312,故答案为:2【考点】本题考查了根与系数的关系,一元二次方程ax2+bx+c0(a0)的根与系数的关系为:x1+x2,x1x24、【解析】【分析】由一元二次方程的一个根为0,另一个根在1到2之间,可设两个根分别为0和,即可得此一元二次方程是:,继而求得答案【详解】解:一元二次方程的一个根为0,另一个根在1到2之间,设两个根分别为0和,此一元二次方程是
19、:,二次函数关系式为:,故答案为【考点】此题考查了一元二次方程根与系数的关系以及二次函数与一元二次方程的关系此题难度适中,注意掌握二次函数与一元二次方程的关系是关键 线 封 密 内 号学级年名姓 线 封 密 外 5、2【解析】【分析】设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,根据花草的种植面积为240m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论【详解】解:设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,依题意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得
20、:x1=2,x2=34(不合题意,舍去)故答案为:2【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键四、解答题1、(1)直线x=1;(2);(3)或【解析】【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)先求出直线MN的解析式,然后设点的坐标为,过点作轴的垂线交直线于点,得到PQ的长度,根据三角形的面积公式,即可求出答案【详解】解:(1)二次函数(),该二次函数图象的对称轴是直线:;(2)该二次函数的图象开口向上,对称轴为直线,当时,取得最大值,即,得:,该二次函数的表达式为:,即点的坐标为(3)设直线的解析式为,则,解得:
21、,设直线的解析式为:,设点的坐标为,过点作轴的垂线交直线于点,如图 线 封 密 内 号学级年名姓 线 封 密 外 则点的坐标是,解得:,点的坐标是或【点睛】本题考查二次函数的性质,一次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型2、(1)ABC见解析,A(3,2),B(4,4),C(6,1);(2)M(2a,b)【解析】【分析】(1)分别作出A,B,C的对应点A、B、C,然后顺次连接可得ABC,再根据所作图形写出坐标即可(2)利用中点坐标公式计算即可【详解】解:(1)ABC如图所示,A(3,2),B(4,4),C(6,1);(2)设M(m,n),则有
22、,m2a,nb,M(2a,b)【点睛】本题考查作图中心对称,解题的关键是熟练掌握中心对称的性质,正确找出对应点位置3、(1)每盒产品的成本为30元(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元【解析】【分析】(1)设原料单价为元,则原料单价为元然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;(2)直接根据“总利润=单件利润销售数量”列出解析式即可; 线 封 密 内 号学级年名姓 线 封 密 外 (3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可【详解】解:(1)设原料单价为元,则原料单价为元依题意,得解得,经检验,是原方程
23、的根每盒产品的成本为:(元)答:每盒产品的成本为30元(2);(3)抛物线的对称轴为=70,开口向下当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;当时,每天的最大利润为元【点睛】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键4、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是【解析】【分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可【详解】解(1)当x=0时,=2250,=2000-=2250-2000=250(m)故答案为:250(2)设小丽
24、出发第时,两人相距,则即其中因此,当时S有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是【点睛】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题的关键5、(1);(2)连接交抛物线对称轴于点,则点即为所求,点的坐标为;存在;点的坐标为或【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可写出抛物线的交点式.(2)因为关于对称轴对称,所以,由两点之间线段最短,知连接交抛物线对称轴于点,则点即为所求,先用待定系数法求出解析式,将对称轴代入得到点坐标.设点,根据抛物线的解析式、直线的解析式,写出Q、M的坐标,分当在上方、下 线 封 密 内 号学级年名姓 线 封 密 外 方两种情况,列关于m的方程,解出并取大于-2的解,即可写出的坐标.【详解】(1),结合图象,得A(-2,0),C(3,0),抛物线可表示为:,抛物线的表达式为;(2)关于对称轴对称,,连接交抛物线对称轴于点,则点即为所求.将点,的坐标代入一次函数表达式,得直线的函数表达式为.抛物线的对称轴为直线,当时,,故点的坐标为;存在;设点,则,.当在上方时,解得(舍)或;当在下方时,解得(舍)或,综上所述,的值为或5,点的坐标为或.【点睛】本题考查了二次函数与一次函数综合问题,熟练掌握待定系数法求解析式、最短路径问题是解题的基础,动点问题中分类讨论与数形结合转化为方程问题是解题的关键.