1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中模拟考试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、关于的一元二次方程的两根应为()AB,CD2、下列各式中表示二次函
2、数的是()Ayx2+By2x2CyDy(x1)2x23、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,图2是点运动时随变化的关系图象,则的长为()ABCD4、设方程的两根分别是,则的值为()A3BCD5、若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是()A6B12C12或D6或二、多选题(5小题,每小题4分,共计20分)1、对于实数a,b,定义运算“”:,例如:42,因为,所以,若函数,则下列结论正确的是()A方程的解为,;B当时,y随x的增大而增大;C若关于x的方程有三个解,则;D当时,函数的最大值为12、已知二次函数y=ax2+bx+c的图象如图,其对称轴
3、为x1,则下列结论中正确的是()A4acBabc0C2ab0Dabc0Eabc03、已知二次函数y=x2-4x+a,下列说法正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A当x1时,y随x的增大而减小B若图象与x轴有交点,则a-4C当a=3时,不等式x2-4x+a0的解集是1x3D若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-34、已知抛物线y(x1)2经过点A(n,y1),B(n2,y2),若y1y2,则n的值可以为()A1B0.5C0D0.55、已知二次函数yax2bxc(a0)的图象如图所示,下列结论正确的有( )A2ab0Babc0C4a2bc0
4、Dac0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图是二次函数 和一次函数y2kx+t的图象,当y1y2时,x的取值范围是_2、若抛物线 的图像与轴有交点,那么的取值范围是_.3、中国“一带一路”倡议给沿线国家带来很大的经济效益若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为_.4、问题背景:如图,将绕点逆时针旋转60得到,与交于点,可推出结论:问题解决:如图,在中,点是内一点,则点到三个顶点的距离和的最小值是_5、已知一元二次方程ax2+bx+c=0(a0),下列结论:若
5、方程两根为-1和2,则2a+c=0;若ba+c,则方程有两个不相等的实数根;若b=2a+3c,则方程有两个不相等的实数根;若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立其中结论正确的序号是_四、解答题(5小题,每小题8分,共计40分)1、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);2、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.3、在平面直角坐标系中,设二次函数(m是实数) 线 封 密 内 号学级年名姓 线 封 密 外 (1)当时,若点在
6、该函数图象上,求n的值(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:4、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为n(n3)如果一个n边形共有20条对角线,那么可以得到方程n(n3)20解得n8或n5(舍去),这个n边形是八边形根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个n边形共有10条对角线”,你认为小明同学的说法正确吗?为什么?5、一个二次函数y=(k1)求k值-参考答案-一、单选题1、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公
7、式解方程即可【详解】x23ax+a2=0,=(3a)24a2=a2,x=.所以x1=a,x2=a.故答案选B.【考点】本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.2、B【解析】【分析】利用二次函数的定义逐项判断即可【详解】解:A、yx2+,含有分式,不是二次函数,故此选项错误;B、y2x2,是二次函数,故此选项正确;C、y,含有分式,不是二次函数,故此选项错误;D、y(x1)2x22x+1,是一次函数,故此选项错误故选:B【考点】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键3、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情
8、况,得到AB和BE之间的关系以及 线 封 密 内 号学级年名姓 线 封 密 外 ,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值【详解】解:由图2可知,当P点位于B点时,即,当P点位于E点时,即,则,,即,点为的中点,,故选:C【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法4、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解】由可知,其二次项系数,一次项系
9、数,由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率5、D【解析】【分析】根据题意,先将方程的两根求出,然后对两根分别作为直角三角形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可【详解】解方程得,当3和4分别为直角三角形的直角边时,面积为;当4为斜边,3为直角边时根据勾股定理得另一直角边为,面积为;则该直角三角形的面积是6或,故选:D【考点】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键二、多选题1、ABD 线 封
10、 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据题干定义求出y(2x)(x+1)的解析式,根据2xx+1及2xx+1可得x1时y2x22x,x1时,yx2+1,进而求解【详解】解:根据题意得:当2xx+1,即x1时,y(2x)22x(x+1)2x22x,当2xx+1,即x1时,y(x+1)22x(x+1)x2+1,当x1时,2x22x0,解得x0(舍去)或x1,当x1时,x2+10,解得x1(舍去)或x1,(2x)(x+1)0的解是x11,x21;故A正确,B、当x1时,y2x22x,抛物线开口向上,对称轴是直线x,x1时,y随x的增大而增大,B选项正确当x1时,y2x22x2(x
11、)2,x1时,y取最小值为y0,当x1时,yx2+10,当x0时,y取最大值为y1,如图,当0m1时,方程(2x)(x+1)m有三个解,选项C错误,选项D正确故答案为:ABD【点睛】本题考查二次函数的新定义问题,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系2、ADE【解析】【分析】根据二次函数开口方向、对称轴和图象性质判断即可;【详解】根据函数图像可知,二次函数与x轴有两个交点,则,故A正确;抛物线开口向上,又抛物线于y轴交于负半轴, 线 封 密 内 号学级年名姓 线 封 密 外 ,又,故B、C错误;由图象可知:当时,即,故D正确;当时,故E正确;故选ADE【点睛】本题主要考查了二次
12、函数图象与系数的关系,准确分析判断是解题的关键3、ACD【解析】【分析】A、此函数在对称轴的左边是随着x的增大而减小,在右边是随x增大而增大,据此作答;B、和x轴有交点,就说明0,易求a的取值;C、解一元二次不等式即可;D、根据左加右减,上加下减作答即可【详解】解:yx24xa,对称轴:直线x2,A、当x1时,y随x的增大而减小,故该选项正确;B、当b24ac164a0,即a4时,二次函数和x轴有交点,该选项错误;C、当a3时,则不等式x24x30,即(x-3)(x-1)0,不等式的解集是1x3,故该选项正确;D、yx24xa配方后是y(x2)2a4,向上平移1个单位,再向左平移3个单位后,函
13、数解析式是y(x-1)2a3,把(1,2)代入函数解析式,易求a3,故该选项正确故选:ACD【点睛】本题考查了二次函数的性质,解题的关键是掌握有关二次函数的增减性、与x轴交点的条件、与一元二次不等式的关系、上下左右平移的规律4、D【解析】【分析】由抛物线解析式可得开口向上,对称轴为,根据函数的性质,分为三种情况进行讨论,求出的范围,即可求解【详解】解:由抛物线解析式y(x1)2可得开口向上,对称轴为,当时,随的增加而减小,当时,随的增加而增大当时,在对称轴左侧,不符合题意, 当时,在对称轴右侧,符合题意,当时,在对称轴两侧,y2y1,可得到对称轴的距离小于到对称轴的距离,即,解得综上所得:由此
14、可得答案为:D【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 此题考查了二次函数在对称轴两侧的增减性,熟练掌握二次函数的有关性质是解题的关键5、AD【解析】【分析】结合图象,根据函数的开口方向、与y轴的交点、对称轴的位置、和当x=-2时,x=-1时,对应y值的大小依次可判断【详解】解:根据开口方向可知,根据图象与y轴的交点可知,根据对称轴可知:,故A选项正确;abc0,故B选项错误;根据图象可知,当x=-2时,故C选项错误;根据图象可知,当x=-1时,故D选项正确故选:AD【点睛】本题考查了二次函数图象判定式子的正负二次函数yax2bxc系数符号由抛物线开口方向、对称轴、抛物线与y轴的
15、交点确定,注意特殊点的函数值三、填空题1、1x2【解析】【分析】根据图象可以直接回答,使得y1y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围【详解】根据图象可得出:当y1y2时,x的取值范围是:1x2故答案为:1x2【考点】本题考查了二次函数的性质本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度2、【解析】【分析】由抛物线 的图像与轴有交点可知,从而可求得的取值范围【详解】解:抛物线 的图像与轴有交点令,有,即该方程有实数根故答案是:【考点】本题考查了二次函数与轴的交点情况与一元二次方程分的情况的
16、关系、解一元一次不等式,能由已知条件列出关于的不等式是解题的关键3、20【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率为x,则300(1+x)2=432,(1+x)2=1.44,解得x=0.2(x=-2.2舍),该地区人均收入增长率为20.故本题答案应为:20.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.4、【解析】【分析】如图,将MOG绕点M逆时针旋转60,得到MPQ,易知MOP为等边三角
17、形,继而得到点O到三顶点的距离为:ONOMOGONOPPQ,由此可以发现当点N、O、P、Q在同一条直线上时,有ONOMOG最小,此时,NMQ75+60135,过Q作QANM交NM的延长线于A,利用勾股定理进行求解即可得.【详解】如图,将MOG绕点M逆时针旋转60,得到MPQ,显然MOP为等边三角形,OMOGOPPQ,点O到三顶点的距离为:ONOMOGONOPPQ,当点N、O、P、Q在同一条直线上时,有ONOMOG最小,此时,NMQ75+60135,过Q作QANM交NM的延长线于A,则MAQ=90,AMQ180-NMQ=45,MQMG4,AQAMMQcos45=4,NQ,故答案为.【考点】本题考
18、查了旋转的性质,最短路径问题,勾股定理,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线是解题的关键.5、故答案为:或【考点】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键2【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 利用根与系数的关系判断;由=b2-4ac判断;由判别式可判断;将x=m代入方程得am2=-(bm+c),再代入=(2am+b)2变形可判断【详解】解:若方程两根为-1和2,则=-12=-2,即c=-2a,2a+c=2a-2a=0,故正确;由ba+c不能判断=b2-4ac值的大小情况,故错误;若b=2a+3c,则=b2-4ac
19、=4(a+c)2+5c20,一元二次方程ax2+bx+c=0有两个不相等的实数根,故正确若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a-(bm+c)+4abm+b2=4abm-4abm-4ac+b2=b2-4ac故正确;故答案为:【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系及根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根四、解答题1、(1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)
20、先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)23,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数
21、法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解2、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】 线 封 密 内 号学级年名姓 线 封 密 外 (1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(
22、4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程3、 (1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P(a+1,c),Q(4m-5
23、+a,c)的纵坐标相同,即可求得对称轴为直线x=a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函数图象上,(2)解:由题意得,顶点是当x2m时,顶点在直线上(3)证明:P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上对称轴是直线a+2m-22m ,a2,P(3,c),把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次
24、函数的性质是解题的关键4、 (1)6(2)错误,理由见解析【解析】【分析】(1)利用题中给出的对角线条数公式即可求解;(2)利用题中给出的对角线条数公式列出一元二次方程,求解方程的根,根据方程是否有正整数解来判断即可(1)设这个多边形的边数是n,则n(n3)9,解得n6或n3(舍去)这个多边形的边数是6;(2)小明同学的说法是不正确的,理由如下:由题可得n(n3)10,解得n,符合方程的正整数n不存在,n边形不可能有10条对角线,故小明的说法不正确【点睛】本题主要考查了一元二次方程的应用,通过方程是否有正整数解来判断是否存在有10条对角线的多边形是解答本题的关键5、k=2【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数可得k2-3k+4=2,且k-10,再解即可【详解】由题意得:k23k+4=2,且k10,解得:k=2;【点睛】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量指数为2这个关键条件