1、课时作业A组基础巩固12log510log50.25 ()A0B1C2 D4解析:2log510log50.25log5102log50.25log5(1020.25)log5252.答案:C2(lg 5)2lg 2 lg 5lg 20的值是()A0 B.1C2 D3解析:(lg 5)2lg 2lg 5lg 20lg 5(lg 5lg 2)lg 20lg 5lg 20lg 1002.答案:C32的值是()A12 B.9C9 D84解析:2log23log2log29log29,又alogaxx,原式9.答案:C4若log5log36log6x2,则x等于()A 9 B.C25 D解析:原式2l
2、g x2lg 5lg 52lg 25,x.答案:D5设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()AlogablogcblogcaBlogablogcalogcbCloga(bc)logablogacDloga(bc)logablogablogac解析:由对数的运算公式loga(bc)logablogac可判断选项C,D错误选项A,由对数的换底公式知logablogcblogca(lg b)2(lg a)2,此式不恒成立选项B,由对数的换底公式知logablogc alogcb,故恒成立答案:B6方程log3(x1)log9(x5)的解是_解析:由题意知解之得x4.答案:47._
3、.解析:原式1.答案:18计算log225log32log59的结果为_解析:原式6.答案:69计算:(1)log;(2)lg 5(lg 8lg 1 000)(lg 2)2lglg 0.06.解析:(1)原式log()110.(2)原式lg 5(3lg 23)3(lg 2)2lg 6lg 623lg 5lg 23lg 53lg2223lg 2(lg 5lg 2)3lg 523lg 23lg 523(lg 2lg 5)2321.10已知2x3y6z1,求证:.证明:设2x3y6zk(k1),则xlog2k,ylog3k,zlog6k.B组能力提升1已知log89a,log25b,则lg 3等于(
4、)A. B. C. D.解析:log89a,a,b,lg 2,lg 3alg 2.答案:C2若lg a,lg b是方程2x24x10的两个根,则(lg)2的值等于()A2 B. C4 D解析:由韦达定理知(lg)2(lg alg b)2(lg alg b)24lg alg b2242.答案:A3设lg alg b2lg(a2b),则log4的值是_解析:依题意,得a0,b0,a2b0,原式可化为ab(a2b)2,即a25ab4b20,则2540,4或1.a2b0,2,4,log41.答案:14已知x,y,z都是大于1的正数,m0,且logxm24,logym40,logxyzm12,求logzm的值解析:logm(xyz)logmxlogmylogmz,而logmx,logmy,故logmzlogmxlogmy,即logzm60.5已知ab8,a4,求a、b的值解析:由a4两边取对数得log2(a)log24(log2a)(log2b)2,由ab8得log2(ab)log28log2alog2b3.由得或解得或