1、八年级数学上册第十四章整式的乘法与因式分解单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、化简(a2)2a(5a)的结果是()Aa4B3a4C5a4Da242、已知a96,b314,c275,则a
2、、b、c的大小关系是()AabcBacbCcbaDbca3、计算(a+3)(a+1)的结果是()Aa22a+3Ba2+4a+3Ca2+4a3Da22a34、下列运算正确的是()ABCD5、若(bc)24(1b)(c1),则b+c的值是()A1B0C1D26、已知a2018x2018,b2018x2019,c2018x2020,则a2b2c2abacbc的值是()A0B1C2D37、计算:,其中,第一步运算的依据是()A同底数幂的乘法法则B幂的乘方法则C乘法分配律D积的乘方法则8、当时,代数式的值为2021,则当时,代数式的值为()A2020B-2020C2019D-20199、计算:的结果是(
3、)ABCD10、计算的结果是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在数学活动课上,老师说有人根据如下的证明过程,得到“12”的结论设a、b为正数,且abab,abb2aba2b2a2a(ba)(b+a)(ba)ab+aa2a12大家经过认真讨论,发现上述证明过程中从某一步开始出现错误,这一步是_(填入编号),造成错误的原因是_2、已知2m3n=4,则代数式m(n4)n(m6)的值为_3、因式分解:_4、分解因式:_5、已知x2+mx+16能用完全平方公式因式分解,则m的值为 _三、解答题(5小题,每小题10分,共计50分)1、计算及解不等式组:(1
4、);(2)2、先化简,再求值:(x2y)(x+2y)+(x+y)(x4y),其中x1,y23、某校为了改善校园环境,准备在长宽如图所示的长方形空地上,修建两横纵宽度均为a米的三条小路,其余部分修建花圃.(1)用含a,b的代数式表示花圃的面积并化简。(2)记长方形空地的面积为S1,花圃的面积为S2,若2S2-S1=7b2,求的值.4、用简便方法计算:1002-992+982-972+22-125、先化简,再求值:,其中,-参考答案-一、单选题1、A【解析】【分析】先根据完全平方公式和单项式乘多项式法则计算,再合并同类项即可求解.【详解】a(5a)=a+4.故选A.【考点】本题考查整式的混合运算,
5、完全平方公式,关键是掌握完全平方公式.2、C【解析】【分析】根据幂的乘方可得:a=312,c=315,易得答案【详解】因为a=312,b,c=315,所以cba故选C3、A【解析】【分析】运用多项式乘多项式法则,直接计算即可【详解】解:(a+3)(a+1)a23a+a+3a22a+3故选:A【考点】本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加4、D【解析】【分析】由单项式乘单项式、幂的乘方、完全平方公式、积的乘方,分别进行判断,即可得到答案【详解】解:A.,此选项错误;B. ,此选项错
6、误;C. ,此选项错误;D. ,此选项正确;故选D【考点】本题考查了单项式乘单项式、幂的乘方、完全平方公式、积的乘方,解题的关键是熟练掌握运算法则进行解题5、D【解析】【分析】先将等式的右边展开并移项到左边,然后再根据完全平方公式可以分解因式,即可得到b+c的值【详解】解:(bc)24(1b)(c1),b22bc+c24c44bc+4b,(b2+2bc+c2)4(b+c)+40,(b+c)24(b+c)+40,(b+c2)20,b+c2,故选:D【考点】本题考查因式分解的应用,掌握运用完全平方公式进行因式分解是解答本题的关键.6、D【解析】【分析】把已知的式子化成(a-b)2+(a-c)2+(
7、b-c)2的形式,然后代入求解即可【详解】原式=(2a2+2b2+2c2-2ab-2ac-2bc)=(a2-2ab+b2)+(a2-2ac+c2)+(b2-2bc+c2)=(a-b)2+(a-c)2+(b-c)2=(1+4+1)=3,故选D.【考点】本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键7、D【解析】【分析】根据题意可知,第一步运算的依据是积的乘方法则:积的乘方,等于每个因式乘方的积【详解】解:计算:,其中,第一步运算的依据是积的乘方法则故选:D【考点】本题主要考查幂的运算,关键是熟练掌握幂的运算法则是解题的关键8、D【解析】【分析】先将x=1
8、代入代数式中,得到p、q的关系式,再将x=-1代入即可解答【详解】将x=1代入代数式中,得:,将x=-1代入代数式中,得:=,故答案为:D【考点】本题考查的是代数式求值,会将所得关系式适当变形是解答的关键9、B【解析】【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可【详解】解:原式故选B【考点】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键10、A【解析】【分析】由单项式乘以单项式,即可得到答案【详解】解:;故选:A【考点】本题考查了单项式乘以单项式,解题的关键是熟练掌握运算法则进行解题二、填空题1、 等式两边除以零,无意义【解析】【分析】根据等式的性质:等式的两边都
9、乘以(或除以)同一个不为零的整式,结果不变,可得答案【详解】解:由ab,得ab0第步中两边都除以(ab)无意义故答案为:;等式两边除以零,无意义【考点】本题考查了等式的性质,等式的两边都乘以(或除以)同一个不为零的整式,结果不变2、8【解析】【详解】解:2m3n=4,原式=mn4mmn+6n=4m+6n=2(2m3n)=2(4)=8,故答案为:83、【解析】【分析】根据平方差公式直接进行因式分解即可【详解】解:,故答案为:【考点】本题考查利用公式法分解因式,熟练掌握平方差公式是解决问题的关键4、【解析】【分析】首先将前三项分组进而利用完全平方公式和平方差公式分解因式得出即可【详解】解:故答案为
10、:【考点】本题考查了分组分解法分解因式,分组分解法一般是针对四项或四项以上多项式的因式分解,分组目的是分组后能出现公因式或能应用公式5、【解析】【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案【详解】解:要使得能用完全平方公式分解因式,应满足,故答案为:【考点】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键三、解答题1、 (1);(2)【解析】【分析】(1)根据完全平方公式以及平方差公式即可求出答案(2)根据不等式组的解法即可求出答案(1)原式(2),由得:,由得:,不等式组的解集为:【考点】本题考查完全平方公式、平方差公式以及一元一次不等式
11、组的解法,本题属于基础题型2、2x23xy8y2,-24【解析】【分析】直接利用乘法公式以及多项式乘多项式计算,再合并同类项,把已知数据代入即可求出得出答案【详解】解:原式x24y2+x24xy+xy4y22x23xy8y2,当x1,y2时,原式21231(2)8(2)22+63224【考点】此题主要考查整式的化简求值,解题的关键是熟知乘法公式以及多项式乘多项式运算法则3、(1)2a2+10ab+8b2;(2)【解析】【分析】(1)把三条小路使花圃的面积变为一个矩形的面积,所以花圃的面积=(4a+2b-2a)(2a+4b-a),然后利用展开公式展开合并即可;(2)利用2S2-S1=7b2得到b
12、=2a,则用a表示S1、S2,然后计算它们的比值【详解】解:(1)平移后图形为:(空白处为花圃的面积)所以花圃的面积=(4a+2b-2a)(2a+4b-a)=(2a+2b)(a+4b)=2a2+8ab+2ab+8b2=2a2+10ab+8b2;(2)S1=(4a+2b)(2a+4b)=8a2+20ab+8b2,S2=2a2+10ab+8b2;2S2-S1=7b2,2(2a2+10ab+8b2)-(8a2+20ab+8b2)=7b2,b2=4a2,b=2a,S1=8a2+40a2+32a2=80a2,S2=2a2+20a2+32a2=54a2,【考点】本题考查了生活中的平移现象:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移通过平移把不规则的图形变为规则图形也考查了代数式4、5050【解析】【详解】试题分析:分别将相邻的两个利用平方差公式进行简便计算,从而将原式转化为1到100的加法计算,从而得出答案试题解析:原式=(100+99)(100-99)+(98+97)(98-97)+(2+1)(2-1)=100+99+98+97+2+150505、,【解析】【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算【详解】解:原式,将,代入式中得:原式【考点】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键