1、人教版八年级数学上册第十一章三角形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A1B2C7D82、如
2、图,中,是延长线上一点,且,则的度数是()ABCD3、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则COF的度数是()A74B76C84D864、已知一个多边形的每一个内角都比它相邻的外角的4倍多30,这个多边形是()A十边形B十一边形C十二边形D十三边形5、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD6、已知,关于x的不等式组至少有三个整数解,且存在以为边的三角形,则a的整数解有()A3个B4个C5个D6个7、如图所示的图形中具有稳定性的是()ABCD8、下列长度的3根小木棒不能搭成三角形的是()A2
3、cm,3cm,4cmB1cm,2cm,3cmC3cm,4cm,5cmD4cm,5cm,6cm9、三个等边三角形的摆放位置如图所示,若,则的度数为()ABCD10、如图,直线l1l2,线段AB交l1,l2于D,B两点,过点A作ACAB,交直线l1于点C,若115,则2()A95B105C115D125第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DEBC若CEFCHD,EFCADH,CEF:EFC5:2,C47,则ADE的度数为_2、如果三角形两条
4、边分别为3和5,则周长L的取值范围是_3、如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则BED=_4、若等腰三角形两边x、y满足,等腰三角形的周长为_5、如图,在中,点E是AC的中点,BE、AD交于点F,四边形DCEF的面积的最大值是_三、解答题(5小题,每小题10分,共计50分)1、多边形的内角和与某一个外角的度数和为1350度(1)求多边形的边数;(2)此多边形必有一内角为多少度?2、如图,CE平分,F为CA延长线上一点,交AB于点G,求的度数3、如图,在三角形中,垂足为A,过点A画的垂线段,垂足为点C,过点C画直线CDOA,交线段于点D(1)补全图形(按要求画图);(
5、2)求的度数:(3)如果,求点A到直线的距离4、小明在学习中遇到这样一个问题:如图,在ABC 中,AD 平分BAC,点 P 为线段 AD 上的一个动点,PEAD 交 BC 的延长线于点 E猜想B、ACB、E 的数量关系(1)小明阅读题目后,没有发现数量关系与解题思路,于是尝试从具体的情况开始探索,若B35,ACB85,则E= (2)小明继续探究,设B,ACB(),当点 P 在线段 AD 上运动时,求E 的大小(用含、的代数式表示)5、如图,在中,AD是的角平分线,求的度数-参考答案-一、单选题1、C【解析】【分析】如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理
6、可得,从而可得,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案【详解】解:如图,设这个凸五边形为,连接,并设,在中,即,在中,即,所以,在中,所以,观察四个选项可知,只有选项C符合,故选:C【考点】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键2、C【解析】【分析】根据三角形的外角性质求解 【详解】解:由三角形的外角性质可得:ACD=B+A,A=ACD-B=130-55=75,故选C【考点】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键3、C【解析】【分析】利用正多边形的性质求出EOF,BOC,BOE即可解决问题【详解】解
7、:由题意得:EOF108,BOC120,OEB72,OBE60,BOE180726048,COF3601084812084,故选:【考点】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识4、C【解析】【分析】首先设多边形的每一个外角为x,则内角为(4x+30),根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360外角的度数可得边数【详解】解:设外角为x,由题意得:x+4x+30=180,解得:x=30,36030=12,这个多边形是十二边形故选:C【考点】本题主要考查多边形内角与外角的知识点,解题的关键是内角与相邻的外角是互补关系
8、,构建方程求解5、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键6、B【解析】【分析】依据不等式组至少有三个整数解,即可得到a3,再根据存在以3,a,5为边的三角形,可得2a8,进而得出a的取值范围是3a8,即可得到a的整数解有4个【详解】解:解不等式,可得x2a,解不等式,可得x4,不等式组至少有三个整数解,a,又存在以3,a,5为边的三角形,2a8,a的取值范围是3a8,a的整数解有4、5、6、7共4个,故选:B【考点】此题考查的是一元一次不等式组的解法和三角形
9、的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了7、B【解析】【分析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性【详解】解:因为三角形具有稳定性,四边形不具有稳定性,一个多边形从一个顶点出发引出的对角线将其分成个三角形,此时这个多边形就具有稳定性了,图便具有稳定性,故选B【考点】此题考查了三角形的稳定性和四边形的不稳定性,注意根据三角形的稳定性进行判断8、B【解析】【分析】看哪个选项中两条较小的边的和大于最大的边即可【详解】A,能构成三角形,不合题意;B,不能构成三角形,符合题意;C,能构成三角形,不合题意;D,能构成三角
10、形,不合题意故选B【考点】此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数9、B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角均等于60,用表示出中间三角形的各内角,再根据三角形的内角和即可得出答案【详解】解:如图所示,图中三个等边三角形,由三角形的内角和定理可知:,即,又,故答案选B【考点】本题考查等边三角形的性质及三角形的内角和定理,熟悉等边三角形各内角均为60是解答此题的关键10、B【解析】【分析】利用垂直定义和三角形内角和定理计算出ADC的度数,再利用平行线的性质可得3的度数,再根据邻补角的性质可得答案【详解】解:ACAB,A90,115,ADC18
11、0-90-1575,l1l2,3ADC75,2180-75105,故选:B【考点】此题主要运用垂直定义、三角形内角和定理以及平行线的性质,解决角之间的关系,本题关键是掌握两直线平行,同位角相等二、填空题1、76【解析】【分析】根据平行线的性质和三角形的内角和解答即可【详解】解:CEFCHD,DHGE,ADHG,EFCADH,BFGEFC,GBFG,ABCG+BFG2EFC,CEF:EFC5:2,C47,EFC38,ABC76,DEBC,ADEABC76,故答案为:76【考点】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键2、10L16【解析】【分析】根据三角形的三边关系确定
12、第三边的取值范围,再根据不等式的性质求出答案【详解】设第三边长为x,有两条边分别为3和5,5-3x5+3,解得2x8,2+3+5x+3+58+3+5,周长L=x+3+5,10L16,故答案为: 10L16【考点】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键3、45【解析】【详解】正六边形ADHGFE的内角为120,正方形ABCD的内角为90,BAE=360-90-120=150,AB=AE,BEA=(180-150)2=15,DAE=120,AD=AE,AED=(180-120)2=30,BED=15+30=454、10【解析】【分析】利用绝对值的非负
13、性求出x和y的值,当等腰三角形的三边分别为2、2、4时,构不成三角形三边,所以等腰三角形的三边分别为4、4、2,此时三角形周长为10【详解】解:,x-20,2-x0,x=2,当等腰三角形的三边分别为2、2、4时,构不成三角形三边,等腰三角形的三边分别为4、4、2,此时三角形周长为10,故答案为:10【考点】本题考查绝对值得非负性,三角形三边的关系,解题的关键是求出x和y的值,排除当等腰三角形的三边分别为2、2、4时这一种情况5、【解析】【分析】如图,连接CF,设SBFD=a,根据,点E是AC的中点可分别表示出S四边形DCEF与SABC,根据ABAC时SABC最大,即可得答案【详解】解:如图,连
14、接CF,设SBFD=a,点E是AC的中点,SCDF=3SBDF=3a,SBCE=SBAE,SCFE=SAFE,SABF=SCBF=SBDF+SCDF=4a,SABD=SABF+SBDF=5a,SADC=3SABD=15a,SABC=SABD+SADC=20a,SCFE=(SADC-SCDF)=6a,S四边形DCEF=SCDF+SCFE=9a,S四边形DCEF=SABC,AB=6,AC=8,AC边上的高的最大值为6,ABAC时SABC最大,即S四边形DCEF的值最大,S四边形DCEF的最大值=SABC=68=,故答案为:.【考点】本题考查三角形的面积及中线的性质,等高的三角形面积比等于它们的底边
15、的比;三角形的中线把三角形分成两个面积相等的两个三角形;熟练掌握相关性质是解题关键三、解答题1、(1)九边形(2)90【解析】【分析】根据n边形的内角和定理可知:n边形内角和为(n-2)180设这个外角度数为x度,利用方程即可求出答案【详解】(1)设这个外角度数为x,根据题意,得(n-2)180+x=1350,解得:x=1350-180n+360=1710-180n,由于0x180,即01710-180n180,解得8.5n9.5,所以n=9(2)可得x=1350-(9-2)180=90该多边形必有一内角度数为180-90=90【考点】主要考查了多边形的内角和定理解题的关键是熟记n边形的内角和
16、为:180(n-2)2、25【解析】【分析】根据角平分线的定义求出ACE,再根据两直线平行,内错角相等可得AFG=ACE,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出GAF,根据三角形的内角和定理即可得到结论【详解】解:CE平分,故的度数是25【考点】本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键3、 (1)见解析(2)90(3)2.4【解析】【分析】(1)根据要求作出图形即可;(2)证明CDAB可得结论;(3)利用面积法求解即可(1)解:如图所示,(
17、2)解:,CDOA,;(3)解:,点A到直线OB的距离是2.4【考点】本题考查作图一复杂作图,平行线的性质,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题4、 (1)25(2)(-);【解析】【分析】(1)根据三角形内角和180,角平分线的定义,三角形外角的性质即可解答;(2)结合(1)的解答,用代数式表示角度进行角的计算,即可解答;(1)解:如图,设AC,PE交于点F,ABC中,B=35,ACB=85,BAC=180-35-85=60,AD平分BAC,则DAC=BAC=30,APF中,APF=90,PAF=30,PFA=60,CFE=PFA=60,ACB是CEF的外角,A
18、CB=E+CFE=85,E=25;(2)解:根据(1)可知:BAC=180-,DAC=90-,CFE=90-(90-)=+,E=ACB-CFE=-(+)=-=(-);【考点】本题考查了三角形内角和定理,角平分线的定义,直角三角形的两个锐角互余,三角形外角的性质;掌握相关定理和性质是解题关键5、102【解析】【分析】由三角形内角和可得BAC=80,然后由角平分线的定义可得,然后再根据三角形内角和可求解【详解】解:在中,(三角形内角和定理),(已知),(等式的性质)AD平分(已知),(角平分线的定义)在中,(三角形内角和定理)(已知),(已证),(等式的性质)【考点】本题主要考查角平分线的定义及三角形内角和,熟练掌握角平分线的定义及三角形内角和是解题的关键