收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx

上传人:a**** 文档编号:641530 上传时间:2025-12-12 格式:DOCX 页数:28 大小:593.73KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第1页
第1页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第2页
第2页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第3页
第3页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第4页
第4页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第5页
第5页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第6页
第6页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第7页
第7页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第8页
第8页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第9页
第9页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第10页
第10页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第11页
第11页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第12页
第12页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第13页
第13页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第14页
第14页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第15页
第15页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第16页
第16页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第17页
第17页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第18页
第18页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第19页
第19页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第20页
第20页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第21页
第21页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第22页
第22页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第23页
第23页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第24页
第24页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第25页
第25页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第26页
第26页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第27页
第27页 / 共28页
2022-2023学年度人教版九年级数学上册第二十四章圆定向训练试题(解析版).docx_第28页
第28页 / 共28页
亲,该文档总共28页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十四章圆定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在O中按如下步骤作图:(1)作O的直径AD;(2)以点D为圆心,DO长为半径画弧,交O于B,C两点;(3)连接DB,

2、DC,AB,AC,BC根据以上作图过程及所作图形,下列四个结论中错误的是()AABD90BBADCBDCADBCDAC2CD2、有一个圆的半径为5,则该圆的弦长不可能是()A1B4C10D113、已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或1204、如图所示,一个半径为r(r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分面积是()ABCD5、如图,在中,以点为圆心,为半径的圆与所在直线的位置关系是()A相交B相离C相切D无法判断6、如图,在ABC中, AG平分CAB,使用尺规作射线

3、CD,与AG交于点E,下列判断正确的是()AAG平分CDBC点E是ABC的内心D点E到点A,B,C的距离相等7、如图,已知O的半径为4,M是O内一点,且OM2,则过点M的所有弦中,弦长是整数的共有()A1条B2条C3条D4条8、如图,是的直径,弦于点,则的长为()A4B5C8D169、如图,在四边形ABCD中,则AB()A4B5CD10、如图,点B,C,D在O上,若BCD130,则BOD的度数是()A50B60C80D100第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正五边形ABCDE内接于O,点F在上,则CFD_度2、如图,O的直径AB26,弦CDAB,垂足

4、为E,OE:BE5:8,则CD的长为_3、如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC2,则图中阴影部分的面积为_(结果保留)4、如图,在RtABC中,ACB=30,E为内切圆,若BE=4,则BCE的面积为_. 5、如图,正方形ABCD的边长为2a,E为BC边的中点, 的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距离为 三、解答题(5小题,每小题10分,共计50分)1、如图,PA、PB分别切O于A、B,连接PO与O相交于C,连接AC、BC,求证:AC=BC 2、如图,已知O为R

5、tABC的内切圆,切点分别为D,E,F,且C90,AB13,BC12(1)求BF的长;(2)求O的半径r3、如图,四边形内接于,对角线,垂足为,于点,直线与直线于点(1)若点在内,如图1,求证:和关于直线对称;(2)连接,若,且与相切,如图2,求的度数4、如图,在直角梯形ABCD中,ADBC,ABC=90,AB=12cm,AD=8cm,BC=22cm,AB为O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s)(1)当t为何值时,四

6、边形PQCD为平行四边形?(2)当t为何值时,PQ与O相切?5、如图,的两条弦(AB不是直径),点E为AB中点,连接EC,ED(1)直线EO与AB垂直吗?请说明理由;(2)求证:-参考答案-一、单选题1、D【解析】【分析】根据作图过程可知:AD是O的直径,根据垂径定理即可判断A、B、C正确,再根据DCOD,可得AD2CD,进而可判断D选项【详解】解:根据作图过程可知:AD是O的直径,ABD90,A选项正确;BDCD,,BADCBD,B选项正确;根据垂径定理,得ADBC,C选项正确;DCOD,AD2CD,D选项错误故选:D【考点】本题考查作图-复杂作图、含30度角的直角三角形、垂径定理、圆周角定

7、理,解决本题的关键是熟练掌握相关知识点2、D【解析】【分析】根据圆的半径为5,可得到圆的最大弦长为10,即可求解【详解】半径为5,直径为10,最长弦长为10,则不可能是11故选:D【考点】本题主要考查了圆的基本性质,理解圆的直径是圆的最长的弦是解题的关键3、D【解析】【分析】由图可知,OA=10,OD=5根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】解:由图可知,OA=10,OD=5,在RtOAD中,OA=10,OD=5,AD=,tan1=,1=60,同理可得2=60,AOB=1+2=60+60=120,C=60,E=180

8、-60=120即弦AB所对的圆周角的度数是60或120,故选D【考点】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键4、C【解析】【分析】当运动到正六边形的角上时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,再由锐角三角函数的定义用表示出的长,可知圆形纸片不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键5、A【解析】【分析】过点C作CDAB于点D,由题意易得AB=5,然后可得,

9、进而根据直线与圆的位置关系可求解【详解】解:过点C作CDAB于点D,如图所示:,根据等积法可得,以点为圆心,为半径的圆,该圆的半径为,圆与AB所在的直线的位置关系为相交,故选A【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键6、C【解析】【分析】根据作法可得CD平分ACB,结合题意即可求解【详解】解:由作法得CD平分ACB,AG平分CAB,E点为ABC的内心故答案为:C【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键7、C【解析】【分析】过点M作ABOM交O于点A、B,根据勾股定理求出AM,根据垂径定理求出AB,进

10、而得到答案【详解】解:过点M作ABOM交O于点A、B,连接OA,则AMBMAB,在RtAOM中,AM,AB2AM,则过点M的所有弦8,则弦长是整数的共有长度为7的两条,长度为8的一条,共三条,故选:C【考点】本题考查了垂径定理,勾股定理,掌握垂直于选的直径平分这条弦,并平分弦所对的两条弧是解题关键8、C【解析】【分析】根据垂径定理得出CM=DM,再由已知条件得出圆的半径为5,在RtOCM中,由勾股定理得出CM即可,从而得出CD【详解】解:AB是O的直径,弦CDAB,CM=DM,AM=2,BM=8,AB=10,OA=OC=5,在RtOCM中,OM2+CM2=OC2,CM=4,CD=8故选:C【考

11、点】本题考查了垂径定理,圆周角定理以及勾股定理,掌握定理的内容并熟练地运用是解题的关键9、D【解析】【分析】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等于斜边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.10、D【解析】【分析】首先圆上取一点A,连接AB,AD,根据圆的

12、内接四边形的性质,即可得BAD+BCD=180,即可求得BAD的度数,再根据圆周角的性质,即可求得答案【详解】圆上取一点A,连接AB,AD,点A、B,C,D在O上,BCD=130,BAD=50,BOD=100.故选D【考点】此题考查了圆周角的性质与圆的内接四边形的性质此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法二、填空题1、36【解析】【分析】连接OC,OD求出COD的度数,再根据圆周角定理即可解决问题【详解】如图,连接OC,OD五边形ABCDE是正五边形,COD=72,CFD=COD=36,故答案为:36【考点】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练

13、掌握基本知识2、24【解析】【分析】连接OC,由题意得OE=5,BE=8,再由垂径定理得CE=DE,OEC=90,然后由勾股定理求出CE=12,即可求解【详解】解:连接OC,如图所示:直径AB=26,OC=OB=13,OE:BE=5:8,OE=5,BE=8,弦CDAB,CE=DE,OEC=90,CE=12,CD=2CE=24,故答案为:24【考点】本题考查的是垂径定理、勾股定理等知识,熟练掌握垂径定理,由勾股定理求出CE的长是解题的关键3、【解析】【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,BAO和EDO的度数,从而可

14、以解答本题【详解】解:四边形ABCD是矩形,OAOCOBOD,ABAO,ABO是等边三角形,BAO60,EDO30,AC2,OAOD1,图中阴影部分的面积为:,故答案为:【考点】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键4、【解析】【分析】如图(见解析),先根据三角形内切圆的性质、直角三角形的性质、切线长定理可求出,再设,利用勾股定理可求出x的值,从而可得BC的长,然后利用三角形的面积公式即可得【详解】如图,设圆E与三边的相切点分别为点,连接则,且由题意得:,圆E为的内切圆平分,BE平分,则在中,在中,由切线长定理

15、得:设,则,在中,由勾股定理得:即解得则的面积为故答案为:【考点】本题考查了三角形内切圆的性质、切线长定理、圆的切线的性质、勾股定理等知识点,掌握理解三角形内切圆的性质是解题关键5、a【解析】【分析】作DE的中垂线交CD于G,则G为的圆心,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,依据勾股定理可得GE=FG=a,根据四边形EGFH是菱形,四边形BCGH是矩形,即可得到RtOEG中,OE=a,即可得到EF=a【详解】如图,作DE的中垂线交CD于G,则G为的圆心,同理可得,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,设GE=GD=x,则CG=2a-x,

16、CE=a,RtCEG中,(2a-x)2+a2=x2,解得x=a,GE=FG=a,同理可得,EH=FH=a,四边形EGFH是菱形,四边形BCGH是矩形,GO=BC=a,RtOEG中,OE=,EF=a,故答案为a【考点】本题主要考查了正方形的性质以及相交两圆的性质,相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦注意:在习题中常常通过公共弦在两圆之间建立联系三、解答题1、证明见解析【解析】【详解】分析:连接OA、OB,根据切线的性质得出OAP和OBP全等,从而得出APC=BPC,从而得出APC和BPC全等,从而得出答案详解:连结OA,OB. PA,PB分别切O于点A,B,PAPB,又O

17、AOB,POPO, OAPOBP(SSS),APCBPC,又PCPC,APCBPC(SAS)ACBC. 点睛:本题主要考查的是切线的性质以及三角形全等的证明与性质,属于基础题型根据切线的性质得出PA=PB是解题的关键2、(1)BF10;(2)r=2【解析】【分析】(1)设BFBDx,利用切线长定理,构建方程解决问题即可(2)证明四边形OECF是矩形,推出OECF即可解决问题【详解】解:(1)在RtABC中,C90,AB13,BC12,AC5,O为RtABC的内切圆,切点分别为D,E,F,BDBF,ADAE,CFCE,设BFBDx,则ADAE13x,CFCE12x,AE+EC5,13x+12x5

18、,x10,BF10(2)连接OE,OF,OEAC,OFBC,OECCOFC90,四边形OECF是矩形,OECFBCBF12102即r2【考点】本题考查三角形的内心,勾股定理,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型3、(1)见解析;(2)【解析】【分析】(1)根据垂直及同弧所对圆周角相等性质,可得,可证与全等,得到,进一步即可证点和关于直线成轴对称;(2)作出相应辅助线如解析图,可得与全等,利用全等三角形的性质及切线的性质,可得,根据平行线的性质及三角形内角和即可得出答案【详解】解:(1)证明:,又同弧所对圆周角相等,在与中,又,点和关于直线成轴对称;(2)如图,延长交

19、于点,连接,、四点共圆,、四点共圆,在与中,为等腰直角三角形,又,与相切,【考点】题目主要考查圆的有关性质、三角形全等、成轴对称、平行线性质等,作出相应辅助线及对各知识点的熟练运用是解题的关键4、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与O相切【解析】【分析】(1)由题意得:,则,再由四边形PQCD是平行四边形,得到DP=CQ,由此建立方程求解即可;(2)设PQ与O相切于点H过点P作PEBC,垂足为E先证明四边形ABEP是矩形,得到PE=AB=12cm由AP=BE=tcm,CQ=2tcm,得到BQ =(222t)cm,EQ=223t)cm;再由切线长定理得到AP=PH,

20、HQ=BQ,则PQ=PH+HQ=AP+BQ=t+222t=(22t)cm;在RtPEQ中,PE2+EQ2=PQ2,则122+(223t)2=(22t)2,即:8t288t+144=0,由此求解即可【详解】解:(1)由题意得:,四边形PQCD是平行四边形,DP=CQ,解得,当时,四边形PQCD为平行四边形;(2)设PQ与O相切于点H过点P作PEBC,垂足为EPEB=90在直角梯形ABCD,ADBC,ABC=90,BAD=90,四边形ABEP是矩形,PE=AB=12cmAP=BE=tcm,CQ=2tcm,BQ=BCCQ=(222t)cm,EQ=BQBE=222tt=(223t)cm;AB为O的直径

21、,ABC=DAB=90,AD、BC为O的切线,AP=PH,HQ=BQ,PQ=PH+HQ=AP+BQ=t+222t=(22t)cm;在RtPEQ中,PE2+EQ2=PQ2,122+(223t)2=(22t)2,即:8t288t+144=0,t211t+18=0,(t2)(t9)=0,t1=2,t2=9;P在AD边运动的时间为秒t=98,t=9(舍去),当t=2秒时,PQ与O相切【考点】本题主要考查了切线长定理,矩形的性质与判定,勾股定理,平行四边形的性质等等,解题的关键在于能够熟练掌握切线长定理5、(1)直线EO与AB垂直理由见解析;(2)证明见解析【解析】【分析】(1)依据垂径定理的推论平分弦(不是直径)的直径垂直于弦可得结论;(2)易证,由垂径定理可得结论.【详解】解:(1)直线EO与AB垂直理由如下:如图,连接EO,并延长交CD于F EO过点O,E为AB的中点,(2), EF过点O,垂直平分CD, 【考点】本题考查了垂径定理,灵活利用垂径定理及其推论是解题的关键.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1