收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx

上传人:a**** 文档编号:641380 上传时间:2025-12-12 格式:DOCX 页数:24 大小:927.61KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第1页
第1页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第2页
第2页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第3页
第3页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第4页
第4页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第5页
第5页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第6页
第6页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第7页
第7页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第8页
第8页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第9页
第9页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第10页
第10页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第11页
第11页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第12页
第12页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第13页
第13页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第14页
第14页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第15页
第15页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第16页
第16页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第17页
第17页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第18页
第18页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第19页
第19页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第20页
第20页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第21页
第21页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第22页
第22页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第23页
第23页 / 共24页
2022-2023学年度人教版九年级数学上册第二十五章概率初步专项测评试题(详解).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十五章概率初步专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以闹息“等宽曲线”除了圆以外,还有一些几何图形也是

2、“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形图2是等宽的勒洛三角形和圆形滚木的截面图()有如下四个结论:勒洛三角形是中心对称图形;使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;图2中,等边三角形的边长为,则勒洛三角形的周长为;图3中,在中随机以一点,则该点取自勒洛三角形部分的概率为,上述结论中,所有正确结论的序号是()ABCD2、现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是()ABCD3、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查

3、各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()ABCD4、一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为()A0.3B0.7C0.4D0.65、在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是,则估计盒子中红球的个数大约是A20个B16个C15个D12个6、箱子内装有除颜色外

4、均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()ABCD7、下列事件中,属于必然事件的是()A抛掷硬币时,正面朝上B明天太阳从东方升起C经过红绿灯路口,遇到红灯D玩“石头、剪刀、布”游戏时,对方出“剪刀”8、某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).A众数B中位数C平均数D方差9、现有4张卡片,

5、正面图案如图所示,它们除此之外完全相同把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( )ABCD10、下列说法正确的是()A“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B“打开电视机,正在播放乒乓球比赛”是必然事件C“面积相等的两个三角形全等”是不可能事件D投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名

6、同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是_2、一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球(1)用画树状图或列表的方法表示出可能出现的所有结果;(1)求两次抽出数字之和为奇数的概率3、一个盒子里装有除颜色外都相同的1个红球,4个黄球把下列事件的序号填入下表的对应栏目中从盒子中随机摸出1个球,摸出的是黄球;从盒子中随机摸出1个球,摸出的是白球;从盒子中随机摸出2个球,至少有1个是黄球事件必然事件不可能事件随机事件序号_4、某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数50100

7、3004006001000发芽频数4796284380571948估计这批青稞发芽的概率是_(结果保留到0.01)5、某十字路口汽车能够行驶的方向有左转、右转还有直行假设所有的汽车经过这个十字路口时,所行驶的这三种方向可能性大小相同,则两辆汽车经过这个十字路口时,在这三种方向中,它们行驶的方向相同的概率为_三、解答题(5小题,每小题10分,共计50分)1、为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解

8、答下列问题:(1)参与此次抽样调查的学生人数是_人,补全统计图(要求在条形图上方注明人数);(2)图中扇形的圆心角度数为_度;(3)若参加成果展示活动的学生共有1200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在,五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中,这两项活动的概率2、生活在数字时代的我们,很多场合用二维码(如图)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图,通过涂器色或不涂色可表示两个不同的信息(1)用树状图或列表格的方法,求图可表示不同信息的总个数

9、:(图中标号表示两个不同位置的小方格,下同)(2)图为的网格图它可表示不同信息的总个数为 ;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用的网格图来表示各人身份信息,若该校师生共人,则的最小值为 ;3、2022北京冬残奥会是历史上第13届冬残奥会,于2022年3月4日至3月13日举行比赛共设6个大项,即残奥高山滑雪、残奥冬季两项、残奥越野滑雪、残奥单板滑雪、残奥冰球、轮椅冰壶小明为了解同学们是否知晓这6大项目,随机对学校的部分同学进行了一次问卷调查,问卷调查的结果分为“非常了解”“比较了解”“基本了解”“不太了解”四个类别,根据调查结果,绘制出如图所示的条形统计图和扇形

10、统计图请根据图表中的信息回答下列问题:(1)求本次调查的样本容量(2)求图中a的值(3)求图“基本了解”类别所对应的圆心角大小(4)若某同学对项目了解类别为“非常了解”或者“比较了解”的话,则可称为“奥知达人”,现从该校随机抽查1名学生,求该学生是“奥知达人”的概率4、从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是 ;(2)任意选取2名学生参加比赛,求一定有乙的概率(用树状图或列表的方法求解)5、第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京-张家口成功举办,其中张家口赛区

11、设有四个冬奥会竞赛场馆,分别为:A云顶滑雪公园、B国家跳台滑雪中心、C国家越野滑雪中心、D国家冬季两项中心小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同(1)小明被分配到D国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率-参考答案-一、单选题1、C【解析】【分析】根据轴对称的性质,圆的性质,等边三角形的性质,概率的概念分别判断即可【详解】解:勒洛三角形是轴对称图形,不是中心对称图形,故错误;夹在平行线之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,使用截面是勒洛三角形的滚木来搬运东西,不

12、会发生上下抖动,故正确;设等边三角形DEF的边长为2,勒洛三角形的周长=,圆的周长=,故正确;设等边三角形DEF的边长为,阴影部分的面积为:;ABC的面积为:,概率为:,故错误;正确的选项有;故选:C【考点】本题考查了平行线的距离,等边三角形的性质,轴对称的性质,概率的定义,正确的理解题意是解题的关键2、D【解析】【分析】列举出所有的情况,再得到至少有一盒过期的情况数,利用概率公式计算即可【详解】解:有4盒同一品牌的牛奶,其中2盒已过期,设未过期的两盒为A,B,过期的两盒为C,D,随机抽取2盒,则结果可能为(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6种情况,其中

13、至少有一盒过期的有5种,至少有一盒过期的概率是,故选D【考点】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=3、C【解析】【详解】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可详解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选C点睛:此题主要考查了列表法求概率,列表法可以不

14、重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比4、A【解析】【分析】根据利用频率估计概率得摸到黄球的频率稳定在0.3,进而可估计摸到黄球的概率【详解】通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,估计摸到黄球的概率为0.3,故选:A【考点】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率5、D【解析】【分析】利用大量重复实验时,事件发生的频率在

15、某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率【详解】设红球有x个,根据题意得,3:(3+x)1:5,解得x12,经检验:x12是原分式方程的解,所以估计盒子中红球的个数大约有12个,故选D【考点】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键6、C【解析】【分析】直接利用概率公式计算【详解】解:因为每次摸到一球后记下颜色将球再放回,所以箱子内总装有除颜色外均相同的28个白球及2个红球,所以第28次摸球时,小芬摸到红球的概率故选:C【考点】本题考查概率公式的应用,对于放回试验,每次摸到红球的概

16、率是相等的.7、B【解析】【分析】根据随机事件、必然事件的概念即可作答【详解】A抛硬币时,正面有可能朝上也有可能朝下,故正面朝上是随机事件;B太阳从东方升起是固定的自然规律,是不变的,故此事件是必然事件;C经过路口,有可能出现红灯,也有可能出现绿灯、黄灯,故遇到红灯是随机事件;D对方有可能出“剪刀”,也有可能出“石头”、“布”,出现对方出“剪刀”随机事假故选:B【考点】本题考查了随机事件、必然事件的概念,充分理解随机事件的概念是解答本题的关键8、B【解析】【详解】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可详解:35个不同的成绩按从小到大排序后,中位数及中位数

17、之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了故选B点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数9、A【解析】【分析】画树状图,共有12种等可能的结果,所抽取的卡片正面上的图形恰好是“天问”和“九章”的结果有2种,再由概率公式求解即可【详解】解:把印有“北斗”、“天问”、“高铁”和“九章”的四张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,所抽中的恰好是B和D的结果有2种,所抽取的卡片正面上的图形恰好是“天问”和“九章”的概率为故选:A【考点】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的

18、结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率10、A【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A【考点】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一

19、定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件二、填空题1、cab【解析】【分析】根据概率公式分别求出各事件的概率,故可求解【详解】依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,a,b,c的大小关系是cab故答案为:cab【考点】本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比2、【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;使用树状图分析时,一定要做到不重不漏(2)根据概率的求法,找准两点:第一点,全部

20、情况的总数;第二点,符合条件的情况数目;二者的比值就是其发生的概率【详解】(1)根据题意,画树状图如下:数字之和为8,9,10,9,10,11,10,11,12由树状图可知,共有9种可能的结果(2) 共有9种可能的结果,其中两次抽出数字之和为奇数(记为事件A)的情况有4种,P(A)=故答案为:【考点】此题考查用列表法或树状图法求概率,概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果那么事件A的概率P (A) =3、 【解析】【分析】直接利用必然事件:一定发生的事件;不可能事件:一定不会发生的事件;随机事件:可能发生可能不发生的事件,来依次判断即可【详解】解:

21、根据盒子里装有除颜色外都相同的1个红球,4个黄球,从盒子中随机摸出1个球,摸出的是黄球,属于随机事件;从盒子中随机摸出1个球,摸出的是白球,属于不可能事件;从盒子中随机摸出2个球,至少有1个是黄球,属于必然事件;故答案是:,【考点】本题考查了必然事件、不可能事件、随机事件,解题的关键是掌握相应的概念进行判断4、0.95【解析】【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可【详解】观察表格得到这批青稞发芽的频率稳定在0.95附近,则这批青稞发芽的概率的估计值是0.95,故答案为:0.95【考点】此题考查了利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解

22、本题的关键5、【解析】【分析】列举出所有情况,看两辆汽车经过这个十字路口行驶的方向相同情况占总情况的多少即可【详解】用树状图列举两辆汽车行驶的方向所有可能的结果,如图所示由树状图可知,这两辆汽车行驶的方向共有9种等可能出现的结果,其中它们行驶的方向相同的有3种结果,所以它们行驶的方向相同的概率为故答案为:【考点】本题考查了树状图法求概率解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解三、解答题1、 (1)120,见解析(2)(3)300人(4)见解析,【解析】【分析】(1)由B的人数除以所占百分比求出抽查的学生人数,即可解决问题;(2)用C的人数除以调查总数再乘以360即

23、可得到答案;(3)用样本估计总体进行计算即可;(4)列出表格或画出树状图,得到所有可能的结果数,找出符合条件的结果数,再由概率公式求解即可(1)因为参与活动的人数为36人,占总人数,所以总人数人,则参与活动的人数为:人;补全统计图如下:故答案为:120;(2)扇形的圆心角为:,故答案为:90;(3)最喜爱“测量”项目的学生人数是:人;答:估计其中最喜爱“测量”项目的学生人数是300人;(4)列表如下:第一项第二项或者树状图如下:所以,选中、这两项活动的概率为:.【考点】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的

24、结果数目m,然后根据概率公式求出事件A或B的概率2、(1)见解析;(2)16;(3)3【解析】【分析】(1)根据题意画出树状图即可求解;(2)根据题意画出树状图即可求解;(3)根据(1)(2)得到规律即可求出n的值【详解】解:画树状图如图所示:图的网格可以表示不同信息的总数个数有个(2)画树状图如图所示:图22的网格图可以表示不同信息的总数个数有16=24个,故答案为:16(3)依题意可得33网格图表示不同信息的总数个数有29=512,故则的最小值为3,故答案为:3【考点】此题主要考查画树状图与找规律,解题的关键是根据题意画出树状图3、 (1)400(2)120(3)72(4)0.35【解析】

25、【分析】(1)根据类别为“非常了解”的同学有20人,所占百分比为5%,用20除以5%即可求解,(2)根据类别为“比较了解”的频数为即可求得的值,(3)根据扇形统计图求得类别为“基本了解”所占百分比为乘以360度即可求解,(4)根据类别为“非常了解”与“比较了解”所占百分比之和为35%,利用频率估算概率即可(1)解:类别为“非常了解”的同学有20人,所占百分比为5%,本次调查的样本容量为:(2)类别为“比较了解”的同学占30%,类别为“比较了解”的频数为(3)结合扇形统计图,类别为“基本了解”所占百分比为, 故对应圆心角的大小为(4)类别为“非常了解”与“比较了解”所占百分比之和为35%, 根据

26、样本估计总体的原则,从该校随机抽查1名学生,该学生是“奥知达人”的概率为0.35【考点】本题考查了条形统计图与扇形统计图信息关联,根据样本估计总体,频率估算概率,掌握以上知识是解题的关键4、 (1)(2)【解析】【分析】(1)利用例举法例举所有的等可能的情况数,再利用概率公式进行计算即可;(2)先列表得到所有的等可能的情况数以及符合条件的情况数,再利用概率公式进行计算即可(1)解:由甲一定参加比赛,再从其余3名学生中任意选取1名,共有甲、乙,甲、丙,甲、丁三种等可能,符合条件的情况数有1种,甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是(2)列表如下:甲乙丙丁甲甲、乙甲、丙

27、甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙所有所有的等可能的情况数有12种,符合条件的情况数有6种,所以一定有乙的概率为:【考点】本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键5、 (1)(2)【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,再由概率公式求解即可(1)解:小明被分配到D国家冬季两项中心场馆做志愿者的概率是;(2)解:画树状图如下:共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,小明和小颖被分配到同一场馆做志愿者的概率为【考点】此题考查了用树状图法求概率树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1