收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx

上传人:a**** 文档编号:641374 上传时间:2025-12-12 格式:DOCX 页数:30 大小:598.97KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第1页
第1页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第2页
第2页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第3页
第3页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第4页
第4页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第5页
第5页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第6页
第6页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第7页
第7页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第8页
第8页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第9页
第9页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第10页
第10页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第11页
第11页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第12页
第12页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第13页
第13页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第14页
第14页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第15页
第15页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第16页
第16页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第17页
第17页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第18页
第18页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第19页
第19页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第20页
第20页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第21页
第21页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第22页
第22页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第23页
第23页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第24页
第24页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第25页
第25页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第26页
第26页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第27页
第27页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第28页
第28页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第29页
第29页 / 共30页
2022-2023学年度人教版九年级数学上册第二十二章二次函数综合训练试卷.docx_第30页
第30页 / 共30页
亲,该文档总共30页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是

2、()Ay=x2+6x(3x6)By=x2+12x(0x12)Cy=x2+12x(6x12)Dy=x2+6x(0x6)2、已知二次函数yax2bxc,其中a0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是()Aabc0Bb0Cc0Dbc03、若在同一直角坐标系中,作,的图像,则它们()A都关于y轴对称B开口方向相同C都经过原点D互相可以通过平移得到4、在下列关于x的函数中,一定是二次函数的是( )Ay=x2By=ax2+bx+cCy=8xDy=x2(1+x)5、已知二次函数的图像如图所示,有下列结论:;0;不等式0的解集为13,正确的结论个数是()A1B2C3D46、二次函数y=ax

3、2+bx+c的图象如图所示,则该二次函数的顶点坐标为()A(1,3)B(0,1)C(0,3)D(2,1)7、如图,抛物线yx2+7x与x轴交于点A,B,把抛物线在x轴及共上方的部分记作C1将C1向左平移得到C2,C2与x轴交于点B,D,若直线yx+m与C1,C2共3个不同的交点,则m的取值范是()ABCD8、当0x3,函数yx2+4x+5的最大值与最小值分别是()A9,5B8,5C9,8D8,49、下列各式中表示二次函数的是()Ayx2+By2x2CyDy(x1)2x210、抛物线经过,对称轴直线,关于的方程在的范围有实数根,则的范围()ABCD第卷(非选择题 70分)二、填空题(5小题,每小

4、题4分,共计20分)1、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B二次函数的图象经过、G、A三点,则该二次函数的解析式为_(填一般式)2、已知二次函数,当x_时,y取得最小值3、已知二次函数中,函数y与自变量x的部分对应值如表:x01234y1052125,两点都在该函数的图象上,若,则m的值为_4、已知三角形的一边长为x,这条边上的高为x的2倍少1,则三角形的面积y与x之间的关系为_5、已知二次函数yx2bxc的顶点在x轴上,点A(m1,n)和点B(m3,n)均在二次函数

5、图象上,求n的值为_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD顶点坐标分别为,抛物线经过A,B,D三点(1)请写出四边形AOCD是哪种特殊的平行四边形;(2)求抛物线的解析式;(3)绕平面内一点M顺时针旋转90得到,即点A,B,C的对应点分别为,若恰好两个顶点落在抛物线上,求此时的坐标2、如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点(1)求这个二次函数的解析式;(2)求这个二次函数的对称轴、顶点坐标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求ABC的面积3、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(

6、点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内的整点个数;当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.4、如图,抛物线ya(x2)2+3(a为常数且a0)与y轴交于点A(0,)(1)求该抛物线的解析式;(2)若直线ykx(k0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x2210时,求k的值;(3)当4xm时,y有最大值,求m的值5、某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一

7、个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?-参考答案-一、单选题1、D【解析】【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答【详解】解:已知一边长为xcm,则另一边长为(6-x)cm则y=x(6-x)化简可得y=-x2+6x,(0x6),故选:D【考点】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般2、B【解

8、析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线的对称轴与x轴负半轴相交,可以判断a,b,c的符号,进而可得结论【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以0,c0,因为a0,所以b0,因为c0,所以abc0,bc0,故选:B【考点】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系3、A【解析】【分析】根据二次函数的图像和性质逐项分析即可【详解】A.因为,这三个二次函数的图像对称轴为,所以都关于轴对称,故选项A正确,符合题意;B.抛物线,的图象开口向上,抛物线的图象开口向下,故选项B错误,不符合题意;

9、C.抛物线,的图象不经过原点,故选项C错误,不符合题意;D.因为抛物线,的二次项系数不相等,故不能通过平移其它二次函数的图象,故D选项错误,不符合题意;故选A【考点】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键4、A【解析】【分析】根据二次函数的定义:y=ax2+bx+c(a0a是常数),可得答案【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A【考点】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数5

10、、A【解析】【分析】根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定【详解】解:抛物线的开口向上,a0,故正确;抛物线与x轴没有交点0,故错误由抛物线可知图象过(1,1),且过点(3,3)8a+2b=24a+b=1,故错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x交于这两点0可化为,根据图象,解得:1x3故错误故选A【考点】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键6、D【解析】【分析】根据抛物线与轴的两个交点坐标

11、确定对称轴后即可确定顶点坐标【详解】解:观察图象发现图象与轴交于点和,对称轴为,顶点坐标为,故选:D【考点】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大7、A【解析】【分析】首先求出点和点的坐标,然后求出解析式,分别求出直线与抛物线相切时的值以及直线过点时的值,结合图形即可得到答案【详解】解:将y0代入,得:,解得:,抛物线与轴交于点、,抛物线向左平移4个单位长度,平移后解析式,如图,当直线过点,有2个交点,解得:,当直线与抛物线相切时,有2个交点,整理得:,相切,解得:,若直线与、共有3个不同的交点,故选:A【考点】本题主要考查抛物线与轴交点以

12、及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度8、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答【详解】yx2+4x+5x2+4x4+4+5(x2)2+9,当x2时,最大值是9,0x3,x0时,最小值是5,故选:A【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键9、B【解析】【分析】利用二次函数的定义逐项判断即可【详解】解:A、yx2+,含有分式,不是二次函数,故此选项错误;B、y2x2,是二次函数,故此选项正确;C、y,含有分式,不是二次函数,故此选项错误;D

13、、y(x1)2x22x+1,是一次函数,故此选项错误故选:B【考点】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键10、C【解析】【分析】由题意先得出抛物线的解析式,进而利用根的判别式以及二次函数图象的性质进行分析计算即可【详解】解:抛物线经过,将代入可得,对称轴直线,解得,抛物线为,关于的方程在的范围有实数根,解得,且同时满足当,以及当,解得(舍去),或者当,以及当,解得,综上可得的范围为:故选:C【考点】本题考查二次函数与一元二次方程的结合,熟练掌握二次函数图象的性质并运用数形结合思维分析是解题的关键二、填空题1、【解析】【分析】先由题意得到,再设设,由勾股定理得

14、到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【详解】解:点,反比例函数经过点B,则点,则,设,则,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为【考点】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.2、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案【详解】解:,该抛物线的顶点坐标为,且开口方向向上,当时,取得最小值,故答案为:1【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法3、1【解析】【分析】根据表中的对应值得到x=1和x

15、=3时函数值相等,则得到抛物线的对称轴为直线x=2,由于y1=y2,所以,是抛物线上的对称点,则,然后解方程即可【详解】解:x=1时,y=2;x=3时,y=2,抛物线的对称轴为直线x=2,两点都在该函数的图象上,y1=y2,点,是抛物线上的对称点,解得:故答案为:1【考点】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式4、y=x2 x【解析】【分析】根据已知得出三角形的高,进而利用三角形面积公式求出即可.【详解】由题意得.故答案为.【考点】此题主要考查了根据几何问题列二次函数关系式,熟记三角形面积公式是解题关键.5、4【解析】【分析】由A、B坐标可得对称轴,由顶点在x

16、轴上可得,求得b2(m+1),c(m+1)2,即可得出yx22(m+1)x+(m+1)2,把A的坐标代入即可求得n的值【详解】解:点A(m1,n)和点B(m+3,n)均在二次函数yx2+bx+c图象上,b2(m+1),二次函数yx2+bx+c的顶点在x轴上,b24c0,2(m+1)24c0,c(m+1)2,yx22(m+1)x+(m+1)2,把A的坐标代入得,n(m1)22(m+1)(m1)+(m+1)24,故答案为:4【考点】本题考查了二次函数的性质,二次函数的顶点坐标,表示出b、c的值是解题的关键三、解答题1、 (1)四边形AOCD是矩形;(2);(3)或【解析】【分析】(1)根据,可得C

17、D/y轴,AD/x轴,得出四边形AOCD是平行四边形,根据AOC= 90,可得四边形AOCD是矩形;.(2)设抛物线的解析式为,把,代入得函数解析式;(3)分三种情况讨论:当点A1,C1落在抛物线上时;当点D1落在抛物线上时;当点C1,D1落在抛物线上时,分别求出点A1的坐标(1)四边形AOCD是矩形,理由如下:,CD/y轴,AD/x轴,四边形AOCD是平行四边形,又AOC= 90,四边形AOCD是矩形;.(2)设抛物线的解析式为,把,代入得:解得:即抛物线的解析式为:;(3),AD = 1,CD =,由(1)得,四边形AOCD是矩形,ADC = 90,由旋转可知:,A1C1D1恰好两个顶点落

18、在抛物线上,分三种情况讨论:当点A1,C1落在抛物线上时,A1D1/y轴,C1D1/z轴,如图2,设则,即,即整理得:,+得:,解得:,当时,;当点D1落在抛物线上时,点A1不可能落在抛物线上,如图3,当点C1,D1落在抛物线上时,A1D1/y轴,C1D1/z轴,如图4,此时C1、D1关于抛物线的对称轴对称,抛物线的对称轴为直线,设则:,又解得:A1D1 = 1,把代入得:解得:综上所述,若A1C1D1恰好两个顶点落在抛物线上,此时A1的坐标为或【考点】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,轴对称的性质,旋转的性质,利用分类讨论思想解决问题是本题的关键2、(1);(2

19、)对称轴为x=4;顶点坐标为(4,2);(3)6【解析】【分析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入,算出b和c,即可得解析式(2)根据顶点坐标公式和对称轴公式即可求得;(3)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值【详解】解:(1)把A(2,0)、B(0,-6)代入得: 解得:这个二次函数的解析式为;(2),b=4,c=-6对称轴 ,顶点坐标为(4,2);(3)该抛物线对称轴为直线x=4, 点C的坐标为(4,0) AC=OC-OA=4-2=2,【考点】本题考查了待定系数法求二次函数的解析式,要会求二次函数的对称轴,会运用面积公式3、(1)

20、顶点P的坐标为;(2) 6个; ,【解析】【分析】(1)由抛物线解析式直接可求;(2)由已知可知A(0,2),C(2+ ,-2),画出函数图象,观察图象可得;分两种情况求:当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a= ,则a1;当a0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1a-【详解】解:(1)y=ax2-4ax+2a=a(x-2)2-2a, 顶点为(2,-2a);(2)如图,a=2,y=2x2-8x+2,y=-2,A(0,2),C(2+,-2),有6个整数点;当a0时,抛物线定点经过(2,-2)时,a=1,抛物

21、线定点经过(2,-1)时,; 当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,; 综上所述:,【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键4、(1);(2);(3)【解析】【分析】(1)把代入抛物线的解析式,解方程求解即可; (2)联立两个函数的解析式,消去 得:再利用根与系数的关系与可得关于的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把代入中, 抛物线的解析式为: (2)联立一次函数与抛物线的解析式得: 整理得: x1+x2=4-

22、3k,x1x2=-3,x12+x22=(4-3k)2+6=10,解得: (3)函数的对称轴为直线x=2,当m2时,当x=m时,y有最大值,=-(m-2)2+3,解得m=,m=-,当m2时,当x=2时,y有最大值,=3,m=,综上所述,m的值为-或【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.5、(1)450千克;(2)当月销售利润为元时,每千克水果售价为元或元;(3)当该优质水果每千克售价为元时,获得的月利润最大【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为元,根据题意列方程解答即可;(3)设月销售利润为元,每千克水果售价为元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可【详解】解:当售价为元/千克时,每月销售量为千克设每千克水果售价为元,由题意,得即整理,得配方,得解得当月销售利润为元时,每千克水果售价为元或元;设月销售利润为元,每千克水果售价为元,由题意,得即配方,得,当时,有最大值,当该优质水果每千克售价为元时,获得的月利润最大【考点】此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1