1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、当0x3,函数yx2+4x+5的最大值与最小值分别是()A9,5B8
2、,5C9,8D8,42、二次函数的顶点坐标为,图象如图所示,有下列四个结论:;,其中结论正确的个数为()A个B个C个D个3、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD4、由二次函数,可知()A其图象的开口向下B其图象的对称轴为直线x=-3C其最小值为1D当x3时,y随x的增大而增大5、如图,G是正方形ABCD内一点,以GC为边长,作正方形GCEF,连接BG和DE,试用旋转的思想说明线段BG与DE的关系()ADEBGBDEBGCDEBGDDEBG二、多选题(5小题,每小题4分,共计20分)1、若二次函数(a是不为0的
3、常数)的图象与x轴交于A、B两点则以下结论正确的有()AB当时,y随x的增大而增大C无论a取任何不为0的数,该函数的图象必经过定点D若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是2、关于二次函数y=ax2+bx+c的图象有下列命题,其中正确的命题是()A当c=0时,函数的图象经过原点; 线 封 密 内 号学级年名姓 线 封 密 外 B当c0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;C函数图象最高点的纵坐标是;D当b=0时,函数的图象关于y轴对称3、下列四个说法中,不正确的是()A一元二次方程有实数根B一元二次方程有实数根C一元二次方程有实数根D一元二次
4、方程x2+4x+5=a(a1)有实数根4、在图形旋转中,下列说法正确的是()A在图形上的每一点到旋转中心的距离相等B图形上每一点转动的角度相同C图形上可能存在不动的点D图形上任意两点的连线与其对应两点的连线长度相等5、如图,在中,点D,E分别为,上的点,且将绕点A逆时针旋转至点B,A,E在同一条直线上,连接,下列结论正确的是()ABCD旋转角为第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、在平面直角坐标系中,二次函数过点(4,3),若当0xa 时,y 有最大值 7, 最小值 3,则 a 的取值范围是_2、若代数式有意义,则x的取值范围是 _3、将抛物线沿直线方向移动个
5、单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是_4、如果关于的一元二次方程的一个解是,那么代数式的值是_5、对任意实数a,b,定义一种运算:,若,则x的值为_四、解答题(5小题,每小题8分,共计40分)1、在平面直角坐标系中,设二次函数(m是实数)(1)当时,若点在该函数图象上,求n的值(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:2、如图,矩形ABCD中,AB2 cm,BC3 cm,点E从点B沿BC以2 cm/s的速度向点C移动,同时点F从点C沿CD以1 cm/s的速度向点D移动,当E,F两点中有一点到达终点
6、时,另一点也停止运动当AEF是以AF为底边的等腰三角形时,求点E运动的时间 线 封 密 内 号学级年名姓 线 封 密 外 3、已知关于x的一元二次方程x2+xm=0(1)设方程的两根分别是x1,x2,若满足x1+x2=x1x2,求m的值(2)二次函数y=x2+xm的部分图象如图所示,求m的值4、如图1,抛物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四边形ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,
7、当AQD是直角三角形时,求出所有满足条件的点Q的坐标5、解方程(1)(x+1)264=0(2)x24x+1=0(3)x2 + 2x20(配方法)(4)x 2-2x-8=0-参考答案-一、单选题1、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答【详解】yx2+4x+5x2+4x4+4+5(x2)2+9,当x2时,最大值是9,0x3, 线 封 密 内 号学级年名姓 线 封 密 外 x0时,最小值是5,故选:A【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键2、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进
8、行判断即可【详解】解:由图像可知a0,c0,对称轴在正半轴,0,b0,故正确;当x=2时,y0,故,故正确;函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2,解得a,故,正确;故选:A【考点】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键3、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像
9、的顶点坐标或掌握“左加右减,上加下减”,是解题的关键4、C【解析】【分析】根据二次函数的性质,直接根据的值得出开口方向,再利用顶点坐标的对称轴和增减性,分别分析即可【详解】解:由二次函数,可知: 线 封 密 内 号学级年名姓 线 封 密 外 ,其图象的开口向上,故此选项错误;其图象的对称轴为直线,故此选项错误;其最小值为1,故此选项正确;当时,随的增大而减小,故此选项错误故选:【考点】此题主要考查了二次函数的性质,同学们应根据题意熟练地应用二次函数性质,这是中考中考查重点知识5、A【解析】【分析】根据四边形ABCD为正方形,得出BC=DC,BCD=90,根据四边形CEFG为正方形,得出GC=E
10、C,GCE=90,再证BCG=DCE,BCG与DCE具有可旋转的特征即可【详解】解:四边形ABCD为正方形,BC=DC,BCD=90,四边形CEFG为正方形,GC=EC,GCE=90,BCG+GCD=GCD+DCE=90,BCG=DCE,BCG绕点C顺时针方向旋转90得到DCE,BG=DE,故选项A【考点】本题考查图形旋转特征,正方形性质,三角形全等条件,同角的余角性质,掌握图形旋转特征,正方形性质,三角形全等条件是解题关键二、多选题1、ACD【解析】【分析】求得顶点坐标,根据题意即可判断正确;根据二次函数的性质即可判断错误;二次函数是不为0的常数)的顶点,即可判断错误;根据题意时,时,即可判
11、断正确【详解】解:二次函数,顶点为,在轴的下方,函数的图象与轴交于、两点,抛物线开口向上,故正确;时,随的增大而增大,故错误;由题意可知当,二次函数是不为0的常数)的图象一定经过点,故正确;线段上有且只有5个横坐标为整数的点,且对称轴为直线,当时,当时,解得,故正确; 线 封 密 内 号学级年名姓 线 封 密 外 故选:ACD【考点】本题考查了二次函数的性质,二次函数图象与系数的关系,二次函数图象上点的坐标特征,能够理解题意,利用二次函数的性质解答是解题的关键2、ABD【解析】【分析】根据c与0的关系判断二次函数yax2bxc与y轴交点的情况;根据顶点坐标与抛物线开口方向判断函数的最值;根据函
12、数yax2c的图象与yax2图象相同,判断函数yax2c的图象对称轴【详解】解:A.c是二次函数yax2bxc与y轴的交点,所以当c0时,函数的图象经过原点;B.c0时,二次函数yax2bxc与y轴的交点在y轴的正半轴,又因为函数的图象开口向下,所以方程ax2bxc0必有两个不相等的实根;C.当a0时,函数图象最高点的纵坐标是;当a0时,函数图象最低点的纵坐标是;由于a值不定,故无法判断最高点或最低点;D.当b0时,二次函数yax2bxc变为yax2c,又因为yax2c的图象与yax2图象相同,所以当b0时,函数的图象关于y轴对称故选:ABD【考点】二次函数yax2bxc最值,掌握当a0时,函
13、数的最大值是;当a0时,函数的最小值是是解题关键3、ABC【解析】【分析】判断上述方程的根的情况,只要看根的判别式的值的符号就可以了【详解】解:、,方程无实数根,错误,符合题意;、,方程无实数根,错误,符合题意;、,方程无实数根,错误,符合题意;、,方程有实数根,正确,不符合题意;故选:ABC【考点】本题考查了一元二次方程根的情况与判别式的关系:解题的关键是掌握(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根4、BCD【解析】【分析】根据旋转的性质分别对每一个选项进行判断即可【详解】解:A、由旋转的性质可得,图形上对应点到旋转中心的距离相等,故此选项不符合题意
14、;B、 由旋转的性质可得,图形上的每一点转动的角度相同,故此选项符合题意;C、由旋转的性质可得,图形上可能存在不动点(例如此点为旋转中心),故此选项符合题意;D、 由旋转的性质可得,图形上对应两点的连线与其对应两点的连线相等,故此选项符合题意;故选BCD 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题主要考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等5、ABC【解析】【分析】由AB=AC,B=30,得出B=C=30,BAC=120,得出将ADE绕点A逆时针旋转至点B、A、E在同一条直线上,可得旋转角为60,故D错误;由
15、DEBC,易证AD=AE,得出BD=EC,故C正确;BE=AE+AB=AD+AC,故B正确;证明DAC=EAC,由AD=AE,得出DEAC,故A正确;即可得出结果【详解】解:AB=AC,B=30,B=C=30,BAC=120,将ADE绕点A逆时针旋转至点B、A、E在同一条直线上,则旋转角为:180120=60,故D错误;DEBC,ADE=B,AED=C,ADE=AED,AD=AE,BD=EC,故C正确;BE=AE+AB=AD+AC,故B正确;BAC=DAE=120,EAC=180-BAC=180-120=60,DAC=120-EAC=120-60=60,DAC=EAC,AD=AE,DEAC,故
16、A正确;故选:ABC【考点】本题考查了旋转的性质、等腰三角形的判定与性质、平行线的性质等知识;熟练掌握旋转的性质与等腰三角形的性质是解题的关键三、填空题1、2a4【解析】【分析】先求得抛物线的解析式,根据二次函数的性质以及二次函数图象上点的坐标特征即可得到a的取值范围【详解】解:二次函数y=-x2+mx+3过点(4,3),3=-16+4m+3,m=4,y=-x2+4x+3,y=-x2+4x+3=-(x-2)2+7,抛物线开口向下,对称轴是x=2,顶点为(2,7),函数有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,当0xa时,y有最大值7,最小值3,2a
17、4故答案为:2a4 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键2、3x且x【解析】【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0【详解】解:若代数式有意义,必有,解得解移项得两边平方得整理得解得解集为3x且x故答案为:3x且x【考点】本题考查了二次根式的概念:式子(a0)叫二次根式,(a0)是一个非负数注意:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于03、【解析】【分析】设抛物线沿直线方
18、向移动个单位长度后顶点坐标为(t,3t),再求出平移后的顶点坐标,最后求出平移后的函数关系式【详解】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),解得:t=1或t=-1(舍去),平移后的顶点坐标为(1,3),移动后抛物线的解析式是故答案为:【考点】本题考查二次函数的图象变换及一次函数的图像,解题的关键是正确理解图象变换的条件,本题属于基础题型4、【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题【详解】解:关于的一元二次方程的一个解是,故答案为:2020【考点】本题考查一元二
19、次方程的解,解答本题的关键是明确一元二次方程的解的含义5、2或-3#-3或2【解析】【分析】根据题意得到关于x的一元二次方程,解方程即可【详解】解:,解得或,故答案为:2或-3【考点】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键四、解答题1、 (1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x=a+2m-2,即可
20、得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函数图象上,(2)解:由题意得,顶点是当x2m时, 线 封 密 内 号学级年名姓 线 封 密 外 顶点在直线上(3)证明:P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上对称轴是直线a+2m-22m ,a2,P(3,c),把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键2、(6)s【解析】【分析】设点E运动的时间
21、是x秒根据题意可得方程,解方程即可得到结论【详解】解:设点E运动的时间是x s根据题意可得22(2x)2(32x)2x2,解这个方程得x16,x26,321.5(s),212(s),两点运动了1.5s后停止运动x6答:当AEF是以AF为底边的等腰三角形时,点E运动的时间是(6)s【考点】本题考查了一元二次方程的应用,考查了矩形的性质,等腰三角形的判定及性质,勾股定理的运用3、 (1)(2)【解析】【分析】(1)根据根与系数的关系求得x1+x2、x1x2,然后代入列出方程,通过解方程来求m的值;(2)把点(1,0)代入抛物线解析式,求得m的值(1)解:由题意得:x1+x2=-1,x1x2=-m,
22、-1=-mm=1当m=1时,x2+x-1=0,此时=1+4m=1+4=50,符合题意m=1;(2) 线 封 密 内 号学级年名姓 线 封 密 外 解:图象可知:过点(1,0),当x=1,y=0,代入y=x2+x-m,得12+1-m=0m=2【考点】本题主要考查了抛物线与x轴的交点,根与系数的关系,解题的关键是掌握如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=-,x1x2=4、(1)y=x2+2x+3;(2)S四边形ACFD= 4;Q点坐标为(1,4)或(,)或(,)【解析】【分析】此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已知点
23、的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标【详解】(1)由题意可得,解得,抛物线解析式为y=x2+2x+3;(2)y=x2+2x+3=(x1)2+4,F(1,4),C(0,3),D(2,3),CD=2,且CDx轴,A(1,0),S四边形ACFD=SACD+SFCD=23+2(43)=4;点P在线段AB上,DAQ不可能为直角,当AQD为直角三角形时,有ADQ=90或AQD=90,i当ADQ=90时,则DQAD,A(1,0),D(2,3),直线AD解析式为y=x+1,可设直线DQ解析式为y=x+b,把D(2,3)代入可求得b=5,直线DQ解析式为y=x+5,联
24、立直线DQ和抛物线解析式可得,解得或,Q(1,4);ii当AQD=90时,设Q(t,t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=(t3),设直线DQ解析式为y=k2x+b2,同理可求得k2=t,AQDQ,k1k2=1,即t(t3)=1,解得t=,当t=时,t2+2t+3=, 线 封 密 内 号学级年名姓 线 封 密 外 当t=时,t2+2t+3=,Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,)【考点】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键5、(1
25、)x1=7,x2=-9;(2)x1=2+,x2=2-;(3)x1=-1+,x2=-1-;(4)x1=-2,x2=4【解析】【分析】(1)方程移项后,运用直接开平方法求解即可;(2)根据配方法解一元二次方程的步骤依次计算即可;(3)根据配方法解一元二次方程的步骤依次计算即可;(4)根据因式分解法求解即可【详解】解:(1)(x+1)2=64x+1=8x1=7,x2=-9(2)x24x=-1x24x+4=-1+4(x-2)2=3x-2=x1=2+,x2=2-(3)x2 + 2x2x2 + 2x+12+1(x+1)2=3x+1=x1=-1+,x2=-1-(4)(x+2)(x-4)=0x+2=0或x-4=0x1=-2,x2=4【考点】本题考查一元二次方程的求解,选择适合的方法是解题关键