1、京改版八年级数学上册第十二章三角形章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,连接BC,CD,则的度数是()A45B50C55D802、如图,与相交于点O,不添加辅助线,判定的依据
2、是()ABCD3、如图,OB平分AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个就能使DOEFOE,你认为要添加的那个条件是()AOD=OEBOE=OFCODE =OEDDODE=OFE4、如图,在ABC中,AB6,AC9,ADBC于D,M为AD上任一点,则MC2MB2等于()A29B32C36D455、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形6、如图,在中,角平分线交于点,则点到的距离是( )AB2CD37、一个三角形具备下列条件仍不是等边三角形的是()A一个角的平分线是对边的
3、中线或高线B两边相等,有一个内角是60C两角相等,且两角的和是第三个角的2倍D三个内角都相等8、如图,两座建筑物,相距160km,小月从点沿BC走向点C,行走ts后她到达点,此时她仰望两座建筑物的顶点和,两条视线的夹角正好为,且已知建筑物的高为,小月行走的速度为,则小月行走的时间的值为()A100B80C60D509、下列长度的3根小木棒不能搭成三角形的是()A2cm,3cm,4cmB1cm,2cm,3cmC3cm,4cm,5cmD4cm,5cm,6cm10、等腰三角形的一个内角是80,则它的底角是()A50B80C50或80D20或80第卷(非选择题 70分)二、填空题(5小题,每小题4分,
4、共计20分)1、将两张三角形纸片如图摆放,量得1+2+3+4=220,则5=_2、如图,CA=CB,CD=CE,ACB=DCE=50,AD、BE交于点H,连接CH,则CHE=_3、如图,ABCDBE,ABC的周长为30,AB9,BE8,则AC的长是_4、如图,在等腰直角三角形ABC中,BAC90,在BC上截取BDBA,作ABC的平分线与AD相交于点P,连接PC,若ABC的面积为2cm2,则BPC的面积为 _cm25、三角形三边长分别为3,则a的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、已知:中,BC边上的高,求BC2、如图,已知AB=AD,AC=AE,BAE=DAC求证:C
5、=E3、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控措施,如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为600米,假设宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?4、已知:如图,在中,点为AB的中点(1)如果点在线段上以每秒个单位的速度由点向点运动,同时,点在线段上由点向点运动,运动的时间秒若点的运动速度与点的运动速度相等,时,与是否全等?请
6、说明理由;若点的运动速度与点的运动速度不相等,当与全等时,求点的运动速度(2)若点以(1)中的运动速度从点出发,点以原来的运动速度从点同时出发,都逆时针沿三边运动,则经过多长时间,点与点第一次在的哪条边上相遇?此时相遇点距离点的路程是多少?5、如图,在中,垂足为,延长至,使得,连接(1)求证:;(2)若,求的周长和面积-参考答案-一、单选题1、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型2、B【解析】【分析】根据,正好是两边一夹角,
7、即可得出答案【详解】解:在ABO和DCO中,故B正确故选:B【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键3、D【解析】【分析】根据OB平分AOC得AOB=BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果【详解】解:OB平分AOCAOB=BOC当DOEFOE时,可得以下结论:OD=OF,DE=EF,ODE=OFE,OED=OEFA答案中OD与OE不是DOEFOE的对应边,A不正确;B答案中OE与OF不是DOEFOE的对应边,B不正确;C答案中,ODE与OED不是DOEFOE的对应角,C不正确;D答案中,若ODE=OFE
8、,在DOE和FOE中, DOEFOE(AAS)D答案正确故选:D【考点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键4、D【解析】【分析】在RtABD及RtADC中可分别表示出BD2及CD2,在RtBDM及RtCDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果【详解】解:在RtABD和RtADC中,BD2AB2AD2,CD2AC2AD2,在RtBDM和RtCDM中,BM2BD2MD2AB2AD2MD2,MC2CD2MD2AC2AD2MD2,MC2MB2(AC2AD2MD2)(AB2AD2MD2)AC2AB245故选:D【考点】本题考查了
9、勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握5、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故选D【考点】本题考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答6、A【解析】【分析】作DEAC于E,作DFBC于F,根据勾股定理可求AC,根据角平分线的性质可得DE=DF,再根据三角形面积公式即可求解【详解】解:作
10、DEAC于E,作DFBC于F,在RtACB中,CD是角平分线,DE=DF,即,解得DE=故点D到AC的距离是故选:A【考点】本题考查了勾股定理,角平分线的性质,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;角平分线的性质:角的平分线上的点到角的两边的距离相等7、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60,根据有一个角为60的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C,两角相等,且两角的
11、和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形;选项D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.8、A【解析】【分析】首先证明A=DEC,然后可利用AAS判定ABEECD,进而可得EC=AB=60m,再求出BE的长,然后利用路程除以速度可得时间【详解】解:AED=90,AEB+DEC=90,ABE=90,A+AEB=90,A=DEC,在ABE和ECD中,ABEECD(AAS
12、),EC=AB=60m,BC=160m,BE=100m,小华走的时间是1001=100(s),故选:A【考点】本题主要考查了全等三角形的应用,关键是正确判定ABEECD9、B【解析】【分析】看哪个选项中两条较小的边的和大于最大的边即可【详解】A,能构成三角形,不合题意;B,不能构成三角形,符合题意;C,能构成三角形,不合题意;D,能构成三角形,不合题意故选B【考点】此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数10、C【解析】【分析】先分情况讨论:80是等腰三角形的底角或80是等腰三角形的顶角,再根据三角形的内角和定理进行计算【详解】解:当80是等腰三角形的顶角时,则
13、顶角就是80,底角为(18080)=50;当80是等腰三角形的底角时,则顶角是180802=20等腰三角形的底角为50或80;故选:C【考点】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键二、填空题1、40【解析】【分析】直接利用三角形内角和定理得出6+7的度数,进而得出答案【详解】如图所示:1+2+6=180,3+4+7=180,1+2+3+4=220,1+2+6+3+4+7=360,6+7=140,5=180-(6+7)=40故答案为40【考点】主要考查了三角形内角和定理,正确应用三角形内角和
14、定理是解题关键2、65【解析】【分析】先判断出,再判断出即可得到平分,即可得出结论【详解】解:如图,在和中,;过点作于,于,在和中,在与中,平分;,故答案为:【考点】此题考查了全等三角形的判定与性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用3、13【解析】【分析】根据全等三角形的性质求出BC,根据三角形的周长公式计算,得到答案【详解】解:ABCDBE,BE8,BCBE8,ABC的周长为30,AB+AC+BC30,AC30ABBC13,故答案为:13【考点】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形的性质4、1【解析】【分析】根据等腰三角形三线
15、合一的性质即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案【详解】BDBA,BP是ABC的角平分线,和是等底同高的三角形,和是等底同高的三角形,故答案为:1【考点】本题考查等腰三角形的性质掌握等腰三角形“三线合一”是解答本题的关键5、【解析】【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围【详解】三角形的三边长分别为3,4,即,故答案为【考点】本题考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系三、解答题1、4或14【解析】【分析】分情况讨论,如图所示:利用勾股定理分别求出的长,从而得出的长度【详解
16、】解:在RtABD中,BD,在RtADC中,CD,故BCBDCD14;在RtABD中,BD,在RtADC中,CD,故BCBDCD4,BC的长为或4或14【考点】此题考查了勾股定理,求解关键是利用勾股定理分别求出BD和CD,注意不要漏解2、见解析.【解析】【分析】由BAE=DAC可得到BAC=DAE,再根据“SAS”可判断ABCADE,根据全等的性质即可得到C=E【详解】BAE=DAC,BAECAE=DACCAE,即BAC=DAE,在ABC和ADE中,ABCADE(SAS),C=E【考点】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“ SAS”、“ ASA”、“AAS”;
17、全等三角形的对应角相等,对应边相等3、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传【解析】【分析】(1)直接比较村庄到公路的距离和广播宣传距离即可;(2)过点作于点,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间【详解】解:(1)村庄能听到宣传,理由:村庄到公路的距离为600米1000米,村庄能听到宣传;(2)如图:过点作于点,假设当宣讲车行驶到点开始影响村庄,行驶点结束对村庄的影响,则米,米,(米),米,影响村庄的时间为:(分钟),村庄总共能听到8分钟的宣传【考点】本题主要考查了垂线的性质,勾股定理,仔细审题获取相关信息合理作出图形是解题的关键4、(1)B
18、PDCQP,理由见解析;点Q的运动速度是4厘米/秒;(2)经过了24秒,点P与点Q第一次在BC边上相遇,此时相遇点距离B点的路程是6厘米【解析】【分析】(1)先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得B=C,最后根据SAS即可证明;因为VPVQ,所以BPCQ,又B=C,要使BPD与CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为VQVP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得【详解】解:(1)t=1(秒),BP=CQ=3(厘米),AB
19、=12,D为AB中点,BD=6(厘米),又PC=BC-BP=9-3=6(厘米),PC=BD,AB=AC,B=C,在BPD与CQP中,BPDCQP(SAS);VPVQ,BPCQ,又B=C,要使BPDCPQ,只能BP=CP=4.5,BPDCPQ,CQ=BD=6点P的运动时间t=1.5(秒),此时VQ=4(厘米/秒);答:点Q的运动速度是4厘米/秒;(2)因为VQVP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得4x=3x+212,解得x=24(秒),此时P运动了243=72(厘米),又ABC的周长为33厘米,72=332+6,点P、Q在BC边上相遇,
20、即经过了24秒,点P与点Q第一次在BC边上相遇,此时相遇点距离B点的路程是6厘米【考点】本题考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用,解题的根据是熟练掌握三角形全等的判定和性质5、(1)证明见解析;(2)周长为,面积为22【解析】【分析】(1)先根据垂直的定义可得,再根据三角形全等的判定定理与性质即可得证;(2)先根据全等三角形的性质可得,从而可得,再利用勾股定理可得,从而可得,然后利用勾股定理可得,最后利用三角形的周长公式和面积公式即可得【详解】(1)证明:,在和中,;(2),则的周长为,的面积为【考点】本题考查了三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键