1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABC
2、D2、如图,与相交于点O,不添加辅助线,判定的依据是()ABCD3、下列因式分解正确的是()ABCD4、北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是()ABCD5、下列式子:,其中分式有()A1个B2个C3个D4个二、多选题(5小题,每小题4分,共计20分)1、如图,在四边形ABCD中,边AB与AD关于AC对称,则下面结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ACA平分BCD;BAC平分BAD;CDBAC;DBE=DE2、如图,下列图形中,是轴对称图形的有()ABCD3、用下列一种正多边形可以拼地板的是()A正三角形B正六边形C正八边形D正十二边
3、形4、下列说法中正确的是()A两个三角形关于某直线对称,那么这两个三角形全等B两个图形关于某直线对称,且对应线段相交,则交点必在对称轴上C两个图形关于某直线对称,对应点的连线不一定垂直对称轴D若直线l同时垂直平分,那么线段5、下列多项式乘法中不能用平方差公式计算的是()A(ab)(ab)B(x2)(2x)C(y)(y)D(x2)(x1)第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,BH 是钝角三角形 ABC 的高,AD 是角平分线, 且2C=90-ABH,若 CD=4,ABC 的面积为 12, 则 AD=_2、_3、若长度分别为3,4,a的三条线段能组成一个三角
4、形,则整数a的值可以是_(写出一个即可)4、分解因式:_.5、若x=,y=,则代数式(2x+3y)2-(2x-3y)2的值是_四、解答题(5小题,每小题8分,共计40分)1、如图,在中,已知是边上的中线,是上一点,且,延长交于点,求证:2、已知,求的值3、如图,在ABC中,A=DBC=36,C=72求1,2的度数 线 封 密 内 号学级年名姓 线 封 密 外 4、如图,在ABC中,ABAC,D,E是BC边上的点,连接AD,AE,以ADE的边AE所在直线为对称轴作ADE的轴对称图形ADE,连接DC,若BDCD(1)求证:ABDACD(2)若BAC100,求DAE的度数5、如图,在ABC中,ACB
5、90,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)-参考答案-一、单选题1、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键2、B【解析】【分析】根据,正好是两边一夹角,即可得出答案【详解】解:在ABO和DCO中,故B正确故选:B【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键3、D【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根
6、据因式分解的方法,逐项分解即可【详解】A. ,不能因式分解,故该选项不正确,不符合题意;B. 故该选项不正确,不符合题意;C. ,故该选项不正确,不符合题意;D. ,故该选项正确,符合题意故选D【考点】本题考查了因式分解,掌握因式分解的方法是解题的关键4、D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,故不符合题意;D是轴对称图形,故选D.【考点】本题考查了轴对称图形的定义,准确理解定义是解题的关键5、B【解析】【分析】根据分母中含有字母的式子是分式,可得答案【详解】解:,的分母中含有字母,属于分式,共有2个故选:B【考点】本题考查了分式的定义,熟悉相关性质,
7、注意是常数,是解题的关键二、多选题1、ABCD【解析】【分析】根据轴对称的性质得出BAC=DAC,ACBD,BE=DE,根据线段垂直平分线性质得出BC=DC,根据等腰三角形性质得出BCA=DCA即可【详解】解:在四边形ABCD中,边AB与AD关于AC对称,BAC=DAC,即AC平分BAD ,ACBD,BE=DE,BC=DC,BCA=DCA,即CA平分BCD;ABCD都正确;故选:ABCD【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了轴对称的性质,线段垂直平分线性质,等腰三角形的性质的应用,主要考查学生推理能力,注意:如果两个图形关于某一直线对称,那么这两个图形是全等形,对称
8、轴是对应点连线的垂直平分线2、BC【解析】【分析】根据轴对称图形的定义,即可求解【详解】解:A、是旋转对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项符合题意;D、是旋转对称图形,故本选项不符合题意;故选:BC【考点】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键3、AB【解析】【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案【详解】解:A、 正三边形的一个内角度数为18036,是360的约数,可以拼地板,符合题意; B、正六边形
9、的每个内角是120,能整除360,可以拼地板符合题意; C. 正八边形的一个内角度数为(8-2)1808135,不是360的约数,不可以拼地板,不符合题意;D.正十二边形的一个内角度数为(12-2)18012150,不是360的约数,不可以拼地板,不符合题意;故选AB【考点】本题考查了平面镶嵌(拼地板),计算正多边形的内角能否整除360是解答此题的关键4、ABD【解析】【分析】根据轴对称图形的性质分别判断得出即可【详解】解:A、两个三角形关于某条直线对称,那么这两个三角形全等,正确,符合题意; B、两个图形关于某直线对称,且对应线段相交,则交点必在对称轴上,正确,符合题意;C、两个图形关于某直
10、线对称,对应点的连线段一定垂直对称轴,故此选项错误,不符合题意;D、若直线l同时垂直平分AA、BB,则线段AB=AB,正确,符合题意故选:ABD【考点】本题主要考查了轴对称图形的性质,正确把握轴对称图形的性质是解题关键5、ABD【解析】【分析】根据平方差的结构特点判断即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:A、(ab)(ab),不符合平方差结构特点,符合题意;B、(x2)(2x),不符合平方差结构特点,符合题意;C、(y)(y),符合平方差结构特点,不符合题意;D、(x2)(x1),不符合平方差结构特点,符合题意;故选:ABD【考点】本题考查了平方差公式,熟练掌握平方差
11、公式是解本题的关键三、填空题1、3【解析】【分析】根据三角形的外角性质和已知条件易证明ABCC,则可判断ABC为等腰三角形,然后根据等腰三角形的性质可得ADBC,BDCD4,再利用三角形面积公式即可求出AD的长【详解】解:BH为ABC的高,AHB90,BAH90ABH,而2C90ABH,BAH2C,BAHC+ABC,ABCC,ABC为等腰三角形,AD是角平分线,ADBC,BDCD4,ABC的面积为12,ADBC12,即AD812,AD3故答案为:3【考点】本题考查了三角形的外角性质、等腰三角形的判定和性质以及三角形的面积,熟练掌握上述知识是解题的关键2、【解析】【分析】由平方差公式进行计算,即
12、可得到答案【详解】解:;故答案为:【考点】本题考查了平方差公式,解题的关键是熟练掌握平方差公式进行计算3、5(答案不唯一)【解析】【分析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边进行求解即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:由题意知:43a4+3,即1a7,整数a可取2、3、4、5、6中的一个,故答案为:5(答案不唯一)【考点】本题考查三角形的三边关系,能根据三角形的三边关系求出第三边a的取值范围是解答的关键4、(m+3)(m-3)【解析】【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可【详解】故答案为【考点】本题考查
13、了利用公式法分解因式,先利用多项式的乘法运算法则展开整理成一般形式是解题的关键.5、 【解析】【分析】根据平方差公式将原分式分解,转化为因式的积形式,再把x、y代入求值.【详解】原式=(2x+3y-2x+3y)(2x+3y+2x-3y)=6y4x=24xy,代入x、y值,计算出得 .【考点】本题考查了学生简便方法的应用,用平方差公式将代数式先化简再代值计算是解决此题的关键.四、解答题1、证明见解析【解析】【分析】延长AD到点G,使得,连接,结合D是BC的中点,易证ADC和GDB全等,利用全等三角形性质以及等量代换,得到AEF中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长到点
14、,延长AD到点G,使得,连接是边上的中线,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 (对顶角相等),(SAS),又,即【考点】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.2、-4【解析】【分析】根据已知求出xy=-2,再将所求式子变形为,代入计算即可【详解】解:,【考点】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用3、1=36,2=72【解析】【分析】在ABC和BDC中,根据三角形内角和定理,即可得出结论【详解】在ABC中,ABC=180AC=1803672=72,1=ABCDBC=7236=36;在BCD中,2=180DB
15、CC=1803672=72【考点】本题考查了三角形的内角和定理,注意掌握数形结合思想的应用4、(1)见解析;(2)【解析】【分析】(1)由对称得到,再证明 即可;(2)由全等三角形的性质,得到,BAC=100,最后根据对称图形的性质解题即可【详解】解:(1)以ADE的边AE所在直线为对称轴作ADE的轴对称图形A,在ABD与中, 线 封 密 内 号学级年名姓 线 封 密 外 (2) ,BAC=100,以ADE的边AE所在直线为对称轴作ADE的轴对称图形A,DAE【考点】本题考查全等三角形的判定与性质、轴对称的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键5、详见解析【解析】【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PDBCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作【考点】此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.