1、人教版八年级数学上册第十一章三角形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A10B11C12D132、已知三角形的三边长分别
2、为4,a,8,那么下列在数轴上表示该三角形的第三边a的取值范围正确的是()ABCD3、下列说法中错误的是( )A三角形的一个外角大于任何一个内角B有一个内角是直角的三角形是直角三角形C任意三角形的外角和都是D三角形的中线、角平分线,高线都是线段4、已知一个多边形的每一个内角都比它相邻的外角的4倍多30,这个多边形是()A十边形B十一边形C十二边形D十三边形5、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A1B2C4D86、三角形的重心是()A三角形三边的高所在直线的交点B三角形的三条中线的交点C三角形的三条内角平分线的交点D三角形三边中垂线的交点7、能说明“锐角,锐角的
3、和是锐角”是假命题的例证图是()ABCD8、如图,ABCD,BED=61,ABE的平分线与CDE的平分线交于点F,则DFB=()A149B149.5C150D150.59、如图,ABC中,点D是AB边上的中点,点E是BC边上的中点,若SDABC=12,则图中阴影部分的面积是()A6B4C3D210、一个三角形的三个内角的度数之比为 1:2:3,这个三角形一定是()A直角三角形B锐角三角形C钝角三角形D无法判定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,为等腰直角三角形,将按如图方式进行折叠,使点A与边上的点F重合,折痕分别与交于点D,点E下列结论:;其中一定正
4、确的结论序号为_2、如图,BE是ABC的中线,点D是BC边上一点,BD2CD,BE、AD交于点F,若ABC的面积为24,则SBDFSAEF等于_3、如图,ABC的中线BD、CE相交于点F,若四边形AEFD的面积为6,则CBF的面积为_4、如图,E为ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,B46,C30,EFC70,则D_5、若一个正n边形的一个内角与和它相邻的外角的度数之比是3:1,那么n_三、解答题(5小题,每小题10分,共计50分)1、如图所示,AD,CE是ABC的两条高,AB6cm,BC12cm,CE9cm(1)求ABC的面积;(2)求AD的长2、小红把一副直角三角
5、板按如图所示的方式摆放在一起,其中,求的度数3、如图,在四边形中,平分交于点,交的延长线于点(1)求的大小;(2)若,求的大小4、如图,点M为ABC的边BC的延长线上一点,CN平分ACM,BN平分ABC,且CN与BN相交于点N,求证:A2N5、如图,ABC中,AD是高,AE、BF是角平分线,它们相交于点O,CAB50,C60,求DAE和BOA的度数-参考答案-一、单选题1、C【解析】【分析】设多边形的边数为n,根据多边形外角和与内角和列式计算即可;【详解】解:设多边形的边数为n,根据题意可得:,化简得:,解得:;故选:C【考点】本题主要考查了多边形的内角和与外角和,结合一元一次方程求解是解题的
6、关键2、A【解析】【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边可得8-4a8+4,根据不等式组解集的表示方法即可得答案【详解】三角形的三边长分别为4,a,8,即,在数轴上表示为A选项故选:A【考点】此题主要考查了三角形的三边关系及不等式组的解集的表示方法,三角形任意两边的和大于第三边,任意两边的差小于第三边;根据三角形的三边关系列出不等式组是解题关键3、A【解析】【分析】根据三角形的性质判断选项的正确性【详解】A选项错误,钝角三角形的钝角的外角小于内角;B选项正确;C选项正确;D选项正确故选:A【考点】本题考查三角形的性质,解题的关键是掌握三角形的各种性质4、C【解析】【分析
7、】首先设多边形的每一个外角为x,则内角为(4x+30),根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360外角的度数可得边数【详解】解:设外角为x,由题意得:x+4x+30=180,解得:x=30,36030=12,这个多边形是十二边形故选:C【考点】本题主要考查多边形内角与外角的知识点,解题的关键是内角与相邻的外角是互补关系,构建方程求解5、C【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解【详解】根据三角形的三边关系得,即,则选项中4符合题意,故选:C【考点】本题主要考查了三角形的三边
8、关系,熟练掌握相关不等关系是解决本题的关键6、B【解析】【分析】根据重心是三角形三边中线的交点,三角形三条高的交点是垂心,三角形三条角平分线的交点是三角形的内心,等知识点作出判断【详解】解:三角形三条高的交点是垂心,A选项不符合题意;三角形三条边中线的交点是三角形的重心,B选项符合题意;三角形三条内角平分线的交点是三角形的内心,C选项不符合题意;三角形三边中垂线的交点三角形的外心,D选项不符合题意故选:B【考点】本题考查了三角形的重心、内心与外心等知识,是基础题,熟记概念是解题的关键7、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案【详解】解:A、如图1,1
9、是锐角,且1=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意; B、如图2,2是锐角,且2=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意;C、如图3,3是钝角,且3=,所以此图说明“锐角,锐角的和是锐角”是假命题,故本选项符合题意;D、如图4,4是锐角,且4=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意故选:C【考点】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键8、B【解析】【分析】过点E作EGAB,根据平行线的性质可得“ABE+BEG=180,GED+E
10、DC=180”,根据角的计算以及角平分线的定义可得“FBE+EDF=ABE+CDE)”,再依据四边形内角和为360结合角的计算即可得出结论【详解】如图,过点E作EGAB,ABCD,ABCDGE,ABE+BEG=180,GED+EDC=180,ABE+CDE+BED=360;又BED=61,ABE+CDE=299ABE和CDE的平分线相交于F,FBE+EDF=(ABE+CDE)=149.5,四边形的BFDE的内角和为360,BFD=360-149.5-61=149.5故选B【考点】本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360,解决该题型题目时,根据平行线的性质得出相等(或互补
11、)的角是关键9、C【解析】【分析】作交AB于点F,作交BC于点G,利用中点的性质即可求出的面积,同理可求出阴影部分面积.【详解】解:作交AB于点F,作交BC于点G,点D是AB边上的中点 点E是BC边上的中点所以阴影部分的面积为3.故选:C.【考点】本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.10、A【解析】【分析】设三个内角分别为x,2x,3x,由三角形内角和180建立方程,求出x,即可判断.【详解】设三个内角分别为x,2x,3x,则x+2x+3x=180,解得x=30,三个内角分别为30,60,90,这个三角形一定是直角三角形,故选A.【考点
12、】本题考查三角形内角和定理,建立方程求出内角的度数是关键.二、填空题1、#【解析】【分析】由折叠性质可得A=3,ADE=FDE,AED=FED,再由等腰直角三角形性质得A=B=3= 45,即可得到3+B= 90;设ADE=FED=,AED=FED=,可得1 +ADE+FED=1 + 2=180,2+AED+FED=2+ 2= 180,A+= 180,即可推导出1 +2=90;1与2不一定相等,DF与AB不一定平行,即可确定答案【详解】解:由折叠的性质,A=3,ADE=FDE,AED =FED,ABC为等腰直角三角形,C = 90,A=B=3= 45,3+B= 90,故选项正确;设ADE=FED
13、=,AED=FED=,1 +ADE+FED=1 + 2=180,2+AED+FED=2+ 2= 180,A+= 180,由得:,1 +2=90,故正确;1 +2=90,1与2不一定相等,故不一定正确;点F是边上的一点,不固定,DF与AB不一定平行,故不一定正确故答案为:【考点】本题考查了折叠的性质,平行线的判定,三角形内角和定理等知识,正确的识别图形是解题的关键2、4【解析】【分析】由ABC的面积为24,得SABC=BChBC=AChAC=24,根据AE=CE=AC,得SAEB=AEhAC,SBCE=EChAC,即SAEF+SABF=12,同理可得SBDF+SABF=16,-即可求得【详解】解
14、:SABC=BChBC=AChAC=24,SABC=(BD+CD)hBC=(AE+CE)hAC=24,AE=CE=AC,SAEB=AEhAC,SBCE=EChAC,SAEB=SCEB=SABC=24=12,即SAEF+SABF=12,同理:BD=2CD,BD+CD=BC,BD=BC,SABD=BDhBC,SABD=SABC=24=16,即SBDF+SABF=16,-得:SBDF-SAEF=(SBDF+SABF)-(SAEF+SABF)=16-12=4,故答案为:4【考点】本题主要考查三角形的面积及等积变换,解答此题的关键是等积代换3、6【解析】【分析】由中线的性质可知,四边形AEFD的面积与三
15、角形DFC的面积之和为三角形ABC面积的一半,同理三角形DFC与三角形BFC的面积之和也为三角形ABC面积的一半,即三角形BFC的面积等于四边形AEFD的面积【详解】解:ABC的中线BD、CE相交于点F,故答案为:【考点】本题考查了三角形中线的性质,能够准确地找到所求图形面积与已知图形面积之间的联系是快速解决本题的关键4、34#34度【解析】【分析】根据题意先求DAC,再依据ADF三角形内角和180可得答案【详解】解:B=46,C=30,DAC=B+C=76,EFC=70,AFD=70,D=180-DAC-AFD=34,故答案为:34【考点】本题考查三角形内角和定理及三角形一个外角等于不相邻的
16、两个内角的和,解题的关键是掌握三角形内角和定理5、8【解析】【分析】设和它相邻的外角的度数为x,则这个内角为3x,根据题意列出方程,即可求解【详解】解:设和它相邻的外角的度数为x,则这个内角为3x,根据题意得:,解得:,故答案为:8【考点】本题主要考查了正多边形的内角和与外角和问题,利用方程思想解答是解题的关键三、解答题1、(1)27;(2)4.5【解析】【分析】(1)根据三角形面积公式进行求解即可;(2)利用面积法进行求解即可【详解】解:(1)由题意得:(2),解得【考点】本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式2、【解析】【分析】如图,由三角形的外角
17、的性质可得: 可得 再利用三角形的内角和求解 再利用四边形的内角和求解 再求解 从而可得结论【详解】解:如图,由三角形的外角的性质可得: 【考点】本题考查的是三角形的内角和,四边形的内角和定理,三角形的外角的性质,平角的定义,掌握以上知识是解题的关键3、 (1)25(2)23【解析】【分析】(1)先由平行线的性质求出ABC=180-BCD=180-130=50,再根据解平分线的定义求解即可;BAD=180-ADC=180-48=132,再根据三角形内角和定理求出(2)先由平行线的性质求出AEB=180-BAD-ABE=23,最后由对顶角性质得解(1)解:,ABC+BCD=180,ABC=180
18、-BCD=180-130=50,平分ABE=ABC=25;(2)解:,BAD+ADC=180,BAD=180-ADC=180-48=132,BAD+ABE+AEB=180,又由(1)知:ABE=25,AEB=180-BAD-ABE=180-132-25=23,DEF=AEB=23【考点】本题考查平行线的性质,角平分线定义,三角形内角和定理,对顶角性质,熟练掌握平行线的性质是解题的关键4、见解析【解析】【分析】先由角平分线的定义得到,再由三角形外角的性质得到,即可推出,由此即可证明【详解】解:BN,CN分别平分ABC、ACM,【考点】本题主要考查了角平分线的定义,三角形外角的性质,解题的关键在于
19、能够熟知三角形外角的性质和角平分线的定义5、DAE5,BOA120【解析】【分析】由CAB50,C60可求出ABC;由AE、BF是角平分线,得到CBFABF35,EAFEAB25;由AD是高,得到DAC;从而计算得到DAE和BOA【详解】CAB50,C60ABC180506070AE、BF是角平分线CBFABF35,EAFEAB25又AD是高ADC90DAC18090C30DAEDACEAF5又ABF35,EAB25BOA180-EAB-ABF180-25-35120DAE5,BOA120【考点】本题考查了三角形角平分线、直角三角形的知识;求解的关键是熟练掌握三角形以及直角三角形的性质,从而完成求解