1、人教版七年级数学上册第二章整式的加减综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A110B168C212D222
2、2、已知一个多项式与的和等于,则这个多项式是()ABCD3、如图,边长为的正方形纸片上剪去四个直径为的半圆,阴影部分的周长是()ABCD4、下列各式:mn,m,8,x2+2x+6,y35y+中,整式有()A3个B4个C6个D7个5、下列说法正确的是()A单项式x的系数是0B单项式32xy2的系数是3,次数是5C多项式x2+2x的次数是2D单项式5的次数是16、式子,0,a,中,下列结论正确的是()A有4个单项式,2个多项式B有3个单项式,3个多项式C有5个整式D以上答案均不对7、下列去括号正确的是()ABCD8、已知a、b、c在数轴上的位置如图,下列说法:abc0;c+a0;cb0正确的有()
3、A1个B2个C3个D4个9、代数式的意义是( )A的平方与的和B与的平方的和C与两数的平方和D与的和的平方10、用实际问题表示代数式意义不正确的是()A单价为a元的苹果与单价为b元的梨的价钱和B3件单价为a元的上衣与4件单价为b元的裤子的价钱和C单价为a元/吨的3吨水泥与4箱b千克的行李D甲以的速度行驶与乙以的速度行驶的路程和第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有一列数按如下规律排列:,则第2022个数是 _2、如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,按这样的方法拼成的第个正方形比第n个正方形多_
4、个小正方形3、若是不等于1的实数,我们把称为的差倒数,如2的差倒数是,-1的差倒数为,现已知,是的差倒数,是的差倒数,是的差倒数,依此类推,则_4、的系数是_5、在代数式,12,中,单项式有_个三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:(1)若,求的值;(2)若的平方比它本身还要大3,求的值2、先化简,再求值:,其中,3、如图,有一个零件,由三部分组成,底座是一个长方体,底面正方形边长为2Rcm,高为3cm,中间部分是底面半径为Rcm,高为3cm的圆柱,上部是底面半径为rcm,高为2cm的圆柱,计算它的体积4、对于多项式,老师提出了两个问题,第一个问题是:当k为何值时,
5、多项式中不含项?第二个问题是:在第一问的前提下,如果,多项式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面吧;(2)在做第二个问题时,马小虎同学把,错看成,可是他得到的最后结果却是正确的,你知道这是为什么吗?5、小刚在爬黑板时计算“一个整式A减去2ab-3bc+4ac”时,误把“减号”抄成了“加号”,得到了正确的结果是:2bc+ac-2ab请你帮他求出整式A和此原题的正确答案-参考答案-一、单选题1、C【解析】【分析】观察不难发现,左上角、左下角、右上角为三个连续的偶数,右下角的数是左下角与右上角两个数的乘积减去左上角的数的差,根据此规律先求出阴影部分的两个数,再列
6、式进行计算即可得解【详解】解:根据排列规律,12下面的数是14,12右面的数是16,8240,22462,44684,m161412212,故选:C【考点】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键2、D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果【详解】解:根据题意列得:-()=,故选D【考点】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键3、D【解析】【分析】根据题意,阴影部分的周长等于正方形的周长减去4,再加上4个半圆的周长,即可求得答案【详解】解:由题意可
7、得:阴影部分的周长故选D【考点】本题考查了列代数式,根据题意求得周长是解题的关键4、C【解析】【分析】根据整式的定义,结合题意即可得出答案【详解】解:在mn,m,8,x2+2x+6,y35y+中,整式有mn,m,8, x2+2x+6,一共6个故选:C【考点】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母单项式和多项式统称为整式5、C【解析】【分析】直接利用单项式和多项式的有关定义分析得出答案【详解】解:A、单项式x的系数是1,故此选项错误;B、单项式32xy2的系数是9,次数是3,
8、故此选项错误;C、多项式x2+2x的次数是2,正确;D、单项式5次数是0,故此选项错误故选:C【考点】此题考查单项式系数和次数定义,及多项式的次数定义,熟记定义是解题的关键6、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和是多项式【详解】解:是两个单项式的和,是多项式;是单项式;是3个单项式的和,是多项式:0,a是单项式;是单项式;不是整式,综上所述,单项式共有4个,多项式共有2个,整式共有6个,故选:A【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键7、D【解析】【分析】根据去括号的法则逐项判断即可求解【详解】解:A、,故本
9、选项错误,不符合题意;B、,故本选项错误,不符合题意;C、,故本选项错误,不符合题意;D、,故本选项正确,符合题意故选:D【考点】本题主要考查了去括号法则,熟练掌握去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键8、C【解析】【分析】根据a、b、c在数轴上的位置可得出a0、cb0,|b|a |c|,对各选项一一判断即可【详解】解:a、b、c在数轴上的位置如图,a0,cb0,|b|a |c|,a、b、c中两负一正,故abc0正确;a |c|,c0,a+ c0故c+a0不正确;c b,|b|
10、a |c|cb0,故cb0,故0正确;正确的个数有3个故选择C【考点】本题考查利用数轴上表示数判定代数式的符号问题,掌握有理数的加减乘除的符号的确定方法,数形结合思想的利用,关键从数轴确定a、b、c的大小与绝对值的大小9、C【解析】【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来。叙述时,要求既要表明运算的顺序,又要说出运算的最终结果【详解】代数式的意义是a与b两数的平方的和故选:C【考点】此题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序10、C【解析】【分析】根据题意列代数式判断即可【详解】解:A、所表示的代数式为:3a+4b,故本选项错误;
11、B、所表示的代数式为:3a+4b,故本选项错误;C、单价为a元/吨的3吨水泥与4箱b千克的行李不能得出代数式3a+4b,故本选项正确;D、所表示的代数式为:3a+4b,故本选项错误;故选:C【考点】本题考查了列代数式的知识,属于基础题,注意仔细分析各选项所表示的代数式二、填空题1、【解析】【分析】根据前4个数归纳类推出一般规律,由此即可得【详解】解:第1个数为,第2个数为,第3个数为,第4个数为,归纳类推得:第个数为,其中为正整数,则第2022个数是,故答案为:【考点】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键2、2n+3【解析】【分析】首先根据图形中小正方形的个数规律得出变化
12、规律,进而得出答案【详解】解:第一个图形有22=4个正方形组成,第二个图形有32=9个正方形组成,第三个图形有42=16个正方形组成,第n个图形有(n+1)2个正方形组成,第n+1个图形有(n+2)2个正方形组成(n+2)2-(n+1)2=2n+3故答案为:2n+3【考点】此题主要考查了图形的变化类,根据图形得出小正方形的变化规律是解题关键3、【解析】【分析】根据数字的变化先求出前几个数,进而发现规律即可求解【详解】解:根据数字的变化可知:,x2是x1的差倒数,即x2,x3是x2的差倒数,即x3,x4是x3的差倒数,即x4,发现规律:,4,三个数一个循环,所以202236733,所以x2022
13、4故答案为:4【考点】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化寻找规律4、【解析】【分析】根据单项式的系数求解即可;单项式的系数是指单项式中的数字因数;【详解】单项式为: , 系数为: 故答案为:【考点】本题考查了单项式系数的概念,正确掌握单项式系数的概念是解题的关键5、3【解析】【分析】根据单项式的定义,进行逐一判断即可【详解】解:在,12,中,单项式有,12,一共3个,故答案为:3【考点】本题主要考查了单项式的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之
14、和叫做单项式的次数三、解答题1、 (1)为-3或5;(2)9【解析】【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)先求出,再整体代入即可(1)解:原式=若,则当,原式当,原式故A为-3或5(2)解:的平方比它本身还要大3,原式故A为9【考点】此题考查了整式的加减-化简求值,熟练掌握运算法则和整体代入思想是解本题的关键2、,-20【解析】【分析】原式去括号,再合并同类项化简,继而将a、b的值代入计算可得【详解】解:原式当,时,原式【考点】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则3、 (12R2+3R2+2r2)cm3【解析】【分析】先分别计
15、算每个几何体体积,再相加【详解】解:由题意得:体积V(2R)23+R23+r22(12R2+3R2+2r2)cm3答:该几何体的体积是(12R2+3R2+2r2)cm3【考点】本题考查几何体体积的计算,掌握各个几何体体积计算公式是求解本题的关键4、(1)见解析;(2)正确,理由见解析【解析】【分析】(1)代数式中不含xy项就是合并同类项以后xy项得系数等于0,据此即可求得k的值;(2)把和代入(1)中的代数式求值即可判断【详解】解:(1)因为,所以只要,这个多项式就不含项即时,多项式中不含项;(2)因为在第一问的前提下原多项式为:,当时,当时,所以当和时结果是相等的【考点】本题考查了合并同类项法则以及求代数式的值,理解不含xy项就是xy项的系数是0是关键5、8bc7ac6ab;【解析】【分析】根据题意可知A=2bc+ac2ab(2ab3bc+4ac),求出A后再计算A(2ab3bc+4ac)即可得正确答案.【详解】由题意可知:A+(2ab3bc+4ac)=2bc+ac2ab,A=2bc+ac2ab(2ab3bc+4ac)=2bc+ac2ab2ab+3bc4ac=5bc3ac4ab, A(2ab3bc+4ac)=5bc3ac4ab2ab+3bc4ac=8bc7ac6ab【考点】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解题的关键.