1、人教版七年级数学上册第二章整式的加减专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、多项式与多项式相加后,不含二次项,则常数m的值是()A2BCD2、有一题目:点、分别表示数-1、1、5,三点在数
2、轴上同时开始运动,点运动方向是向左,运动速度是;点、的运动方向是向右,运动速度分别、,如图,在运动过程中,甲、乙两位同学提出不同的看法,甲:的值不变;乙:的值不变;下列选项中,正确的是()A甲、乙均正确B甲正确、乙错误C甲错误、乙正确D甲、乙均错误3、下列计算正确的是()A3a2b5abB5a22a23C7aa7a2D2a2b4a2b2a2b4、用正方形按如图所示的规律拼图案,其中第个图案中有5个正方形,第个图案中有9个正方形,第个图案中有13个正方形,第个图案中有17个正方形,此规律排列下去,则第个图案中正方形的个数为()A32B34C37D415、观察下面一列有序数对:(1,1),(1,2
3、),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),按这些规律,第50个有序数对是()A(3,8)B(4,7)C(5,6)D(6,5)6、在中,是代数式的有()A5个B4个C3个D2个7、黑板上有一道题,是一个多项式减去,某同学由于大意,将减号抄成加号,得出结果是,这道题的正确结果是()ABCD8、下列各组中的两项,不是同类项的是()A-x2y和2x2yB23和32C-m3n2与m2n3D2R与2R9、若多项式的值为2,则多项式的值是()A11B13C-7D-510、下列说法正确的是()A的项是,5B与都是多项式C多项式的
4、次数是3D一个多项式的次数是6,则这个多项式中只有一项的次数是6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有理数a、b、c在数轴上的位置如图:化简:2、已知一列数2,8,26,80,按此规律,则第n个数是_(用含n的代数式表示)3、某种桔子的售价是每千克x元,用面值为100元的人民币购买了6千克,应找回_元4、一个多项式M减去多项式,小马虎却误解为先加上这个多项式,结果,得,则正确的结果是_5、在多项式中,与_是同类项,与_是同类项,与_也是同类项,合并后是_三、解答题(5小题,每小题10分,共计50分)1、为了加强公民的节水意识,合理利用水资源,某市采用价格调控
5、的手段达到节水的目的该市自来水收费的价目表如下(注:水费按月份结算):每月用水量价格不超出5m3的部分2元/m3超出5m3不超出10m3的部分4元/m3超出10m3的部分8元/m3设李老师家某月用水量为(1)若,则李老师当月应交水费多少元?(2)若,则李老师当月应交水费多少元?(用含的代数式表示,并化简)2、已知(1)求;(2)求;(3)如果,那么C的表达式是什么?3、【观察】149=49,248=96,347=141,2327=621,2426=624,2525=625,2624=624,2723=621,473=141,482=96,491=49【发现】根据你的阅读回答问题:(1)上述内容
6、中,两数相乘,积的最大值为 ;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是 【类比】观察下列两数的积:159,258,357,456,mn,564,573,582,591猜想mn的最大值为 ,并用你学过的知识加以证明4、设,若且,求A的值5、如图,数轴上的三个点A,B,C分别表示实数a,b,c(1)如果点C是的中点,那么a,b,c之间的数量关系是_;(2)比较与的大小,并说明理由;(3)化简:-参考答案-一、单选题1、B【解析】【分析】合并同类项后使得二次项系数为零即可;【详解】解析:,当这个多项式不含二次项时,有,解得故选B【考点】本题主要考查了合并同类
7、项的应用,准确计算是解题的关键2、B【解析】【分析】设运动时间为xs,则P表示的数是为-1-2x,Q表示的数为1+x,点M表示的数为5+3x,根据数轴上两点间的距离公式计算整理即可判断【详解】点、分别表示数-1、1、5,三点在数轴上同时开始运动,点运动方向是向左,运动速度是;点、的运动方向是向右,运动速度分别、,设运动时间为xs,则P表示的数是为-1-2x,Q表示的数为1+x,点M表示的数为5+3x,3PM-5PQ=3(5+3x+1+2x)-5(1+x+1+2x)=8,保持不变;甲的说法正确;3QM-3PQ=3(5+3x-1-x)-3(1+x+1+2x)=6-3x,与x有关,会变化;乙的说法不
8、正确;故选B【考点】本题考查了数轴上的两点间的距离,数轴上点与数的关系,准确表示数轴上两个动点之间的距离是解题的关键3、D【解析】【分析】直接利用合并同类项法则分别分析得出答案【详解】A、3a+2b,无法计算,故此选项错误;B、5a2-2a2=3a2,故此选项错误;C、7a+a=8a,故此选项错误;D、2a2b-4a2b=-2a2b,正确故选D【考点】此题主要考查了合并同类项,正确掌握运算法则是解题关键4、C【解析】【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可【
9、详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+41;第3个图中有13个正方形,可以写成:5+4+4=5+42;第4个图中有17个正方形,可以写成:5+4+4+4=5+43;第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:49+1=37故选:C【考点】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键5、C【解析】【分析】不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1,根
10、据此规律即可知第50个有序数对.【详解】观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1,第46、47、48、49、50个有序数对依次是、.所以C选项是正确的.【考点】本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.6、A【解析】【分析】代数式是由数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、等符号【详解】,含有“=”和“”,所以不是代数式,则是代数式的有其5个,故选:A【考点】考查了代数式的定义,掌
11、握代数式的定义是本题的关键,注意含有=、等符号的不是代数式7、D【解析】【分析】先利用加法的意义列式求解原来的多项式,再列式计算减法即可得到答案.【详解】解: 所以的计算过程是: 故选:【考点】本题考查的是加法的意义,整式的加减运算,熟悉利用加法的意义列式,合并同类项的法则是解题的关键.8、C【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)即可作出判断【详解】解:A、-x2y和2x2y所含字母相同,相同字母的指数相同,是同类项;B、23和32,都是整数,是同类项;C、-m3n2与m2n3,所含字母相同,相同字母的指数不同,不是同类项;D、2R与2R,所含字母相同,相同字母的
12、指数相同,是同类项;故选C【考点】本题考查了同类项定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点9、D【解析】【分析】将多项式变形为,再将整体代入即可得解;【详解】解: ,=,故选择:D【考点】本题主要考查代数式的求值,利用整体代入思想求解是解题的关键10、B【解析】【分析】根据多项式的项数、次数和多项式定义,即几个单项式的和叫做多项式判断即可;【详解】解:A的项是,5,故错误;B与都是多项式,故正确;C多项式的次数是2,故错误;D一个多项式的次数是6,则这个多项式中不一定只有一项的次数是6,如,故错误故选B【考点】本题主要考查了
13、多项式的定义、项数、次数,准确分析判断是解题的关键二、填空题1、【解析】【分析】根据、在数轴上的位置,进行绝对值的化简,然后合并【详解】解:由图可得,【考点】本题考查了绝对值、整式的加减,解题的关键是掌握去括号法则和合并同类项法则2、3n1【解析】【详解】分析:根据观察等式,可发现规律,根据规律,可得答案详解:已知一列数2,8,26,80, 按此规律,则第n个数是 故答案为点睛:本题考查了数字的变化类,规律是第几个数就是3的几次方减13、(100-6x)【解析】【分析】根据单价数量=总价求出买桔子一共花的钱,然后用100减去已经购买的钱即可解答【详解】解:应找回(100-6x)元故答案为:(1
14、00-6x)【考点】本题考查用字母表示数,列代数式等知识,是基础考点,掌握相关知识是解题关键4、【解析】【分析】(1)根据题意可得,求出M,然后求出即可;(2)设,根据即,因此所求的.【详解】【方法1】由题意,得易得则正确的结果是【方法2】设,由题意,得,故,因此所求的则正确的结果是【考点】在整式运算应用过程中,我们可以发现,在尽量避免烦琐计算的同时要运用一些整体代入的思想,这样可以有效地将计算过程缩短,达到化繁为简的目的方法二在进行运算之前,先采用换元的思想将运算过程简化为,这样能在优化算法的同时减少计算量5、 5 【解析】【分析】根据同类项的定义分别进行判断即可,再根据合并同类项的法则即可
15、求出结果【详解】解:在多项式中,根据同类项的定义知,与是同类项,与是同类项与5是同类项,合并后是故答案为 :,5,.【考点】本题考查了同类项的定义及合并同类项的法则,是基础知识,需熟练掌握三、解答题1、 (1)16元;(2)李老师当月应交水费2x(0x6)元或(4x-12)元(6x10)或(8x-10)元(10x15)【解析】【分析】(1)利用市自来水收费的价目表分别计算每段所付费用,再相加即可;(2)利用分类讨论的思想方法,利用市自来水收费的价目表分别计算每段所付费用,再相加即可得出结论(1)若李老师家某月用水量为7(m3),则李老师当月应交水费:62+14=16(元);所以,李老师当月应交
16、水费16元(2)当0x6时,则李老师当月应交水费2x元;当6x10时,李老师当月应交水费:62+(x-6)4=(4x-12)元,当10x15时,李老师当月应交水费:62+44+(x-10)8=(8x-52)元综上,若0x15,则李老师当月应交水费2x(0x6)元或(4x-12)元(6x10)或(8x-10)元(10x15)【考点】本题主要考查了列代数式,利用分类讨论的思想方法解答是解题的关键2、(1); (2);(3)【解析】【分析】(1)根据题意把A和B表示的代数式代入,然后合并同类项求解即可;(2)根据题意把A和B表示的代数式代入,然后合并同类项求解即可;(3)根据题意把A和B表示的代数式
17、代入,然后表示出C即可;【详解】解:(1),=;(2),=;(3),将A和B代入,得:【考点】此题考查了代数式的表示和合并同类项,解题的关键是熟练掌握代数式的表示和合并同类项方法3、(1)625;(2)a+b=50; 900;证明见解析.【解析】【分析】发现:(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是ab50;类比:由于mn60,将n60m代入mn,得mnm260m(m30)2900,利用二次函数的性质即可得出m30时,mn的最大值为900【详解】解:发现:(1)上述内容中,两数相乘,积的最大值为625故答案为625;(2)
18、设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50故答案为a+b=50;类比:由题意,可得m+n=60,将n=60m代入mn,得mn=m2+60m=(m30)2+900,m=30时,mn的最大值为900故答案为900【考点】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握4、283【解析】【分析】根据绝对值和偶次方的非负性求出,代入求出x的值,即可求出答案【详解】解:;, ,【考点】本题考查了绝对值、偶次方、整式的混合运算的应用,解此题的关键是求出、的值5、 (1)2c=a+b(答案不唯一)(2);理由见解析(3)【解析】【分析】(1)利用C是的中点得到AC=BC,可得,化简即可;(2)通过数轴得出a,b,c的大小关小,从而得出b-4和c+1的大小;(3)先判断a-2,b+1,c的正负,然后根据绝对值的性质化简即可(1)C是的中点,且数轴上的三个点A,B,C分别表示实数a,b,c,AC=BC,2c=a+b,故答案是:2c=a+b;(2),理由如下:由数轴知:,b-40,;(3)由数轴知:,a-20,b+10,【考点】本题考查了数轴的意义,绝对值以及有理数大小的比较,掌握绝对值的性质以及有理数的加减法则是解题的关键