收藏 分享(赏)

2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx

上传人:a**** 文档编号:634246 上传时间:2025-12-12 格式:DOCX 页数:25 大小:384.69KB
下载 相关 举报
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第1页
第1页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第2页
第2页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第3页
第3页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第4页
第4页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第5页
第5页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第6页
第6页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第7页
第7页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第8页
第8页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第9页
第9页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第10页
第10页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第11页
第11页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第12页
第12页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第13页
第13页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第14页
第14页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第15页
第15页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第16页
第16页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第17页
第17页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第18页
第18页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第19页
第19页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第20页
第20页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第21页
第21页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第22页
第22页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第23页
第23页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第24页
第24页 / 共25页
2022-2023学年京改版八年级数学上册期末模拟试题 卷(Ⅲ)(含详解).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册期末模拟试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,RtACB中,ACB=90,ACB的角平分线AD,BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点

2、H,则下列结论:APB=135; AD=PF+PH;DH平分CDE;S四边形ABDE=SABP;SAPH=SADE,其中正确的结论有()个A2B3C4D52、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A3、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限B第二象限C第三象限D第四象限4、如图,四边形中,且,则四边形的面积为()ABCD5、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里二、多选

3、题(5小题,每小题4分,共计20分)1、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使ABDACE,添加一个条件可行的是()AAD=AEBBD=CECBE=CDDBAD=CAE2、下列说法中不正确的有()A有理数和数轴上的点一一对应B不带根号的数一定是有理数C负数没有立方根D是17的平方根3、在直角坐标系中,等边三角形的顶点A,B的坐标分别是,则顶点C的坐标可能是()ABCD4、下列计算正确的是()ABCD5、如图,O是直线上一点,A,B分别是,平分线上的点,于点E,于点C,于点D,则下列结论中,正确的是()ABC与互余的角有两个DO是的中点第卷(非选择题 65分)三、填空题(5

4、小题,每小题5分,共计25分)1、函数y=中,自变量x的取值范围是_2、比较下列各数的大小:(1) _3;(2) _-3、如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_米4、如图,已知AC与BF相交于点E,ABCF,点E为BF中点,若CF8,AD5,则BD_5、公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角的

5、正切为,那么大正方形的面积是_四、解答题(5小题,每小题8分,共计40分)1、如图,在ABC中,ACB90,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)2、如图所示,AD,CE是ABC的两条高,AB6cm,BC12cm,CE9cm(1)求ABC的面积;(2)求AD的长3、先化简,再求值:,其中4、图、图均是66的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图(1)在图中的线段AB上找一点D,连结CD,使BCD BDC(2)在图中的线段AC上

6、找一点E,连结BE,使EAB EBA5、如图,在中,,;点在上,连接并延长交于(1)求证:;(2)求证:;(3)若,与有什么数量关系?请说明理由-参考答案-一、单选题1、B【解析】【分析】正确利用三角形内角和定理以及角平分线的定义即可解决问题正确证明ABPFBP,推出PA=PF,再证明APHFPD,推出PH=PD即可解决问题错误利用反证法,假设成立,推出矛盾即可错误,可以证明S四边形ABDE=2SABP正确由DHPE,利用等高模型解决问题即可【详解】解:在ABC中,AD、BE分别平分BAC、ABCACB=90A+B=90又AD、BE分别平分BAC、ABCBAD+ABE=(A+B)=45APB=

7、135,故正确BPD=45又PFADFPB=90+45=135APB=FPB又ABP=FBPBP=BPABPFBP(ASA)BAP=BFP,AB=FB,PA=PF在APH和FPD中APHFPD(ASA)PH=PDAD=AP+PD=PF+PH故正确ABPFBP,APHFPDSAPB=SFPB,SAPH=SFPD,PH=PDHPD=90HDP=DHP=45=BPDHDEPSEPH=SEPDSAPH=SAED,故正确S四边形ABDE=SABP+SAEP+SEPD+SPBD=SABP+(SAEP+SEPH)+SPBD=SABP+SAPH+SPBD=SABP+SFPD+SPBD=SABP+SFBP=2S

8、ABP,故不正确若DH平分CDE,则CDH=EDHDHBECDH=CBE=ABECDE=ABCDEAB,这个显然与条件矛盾,故错误故选B【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型2、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型3、D【解析】【分析】依据即可得到 进而得到直线不经过的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象限故选D【考

9、点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数4、C【解析】【分析】连接AC,在RtADC中,已知AB,BC的长,运用勾股定理可求出AC的长,在ADC中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD的面积为RtACD与RtABC的面积之差【详解】解:连接AC,AC=5cm,CD=12cm,DA=13cm, ADC为直角三角形,故四边形ABCD的面积为24cm2故选:C【考点】本题考查的是勾股定理的逆定理及三角形的面积公式,根据题意作出辅助线,判断出ACD的形状是解答此题的关键5、C【解析】【分析】根

10、据题意画出图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大二、多选题1、ABCD【解析】【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可【详解】解:在ABC中,ABAC,BC,当ADAE时,ADEAED,ADEBBAD,AEDC

11、CAE,BADCAE,然后根据SAS或ASA或AAS可判定ABDACE;当BDCE时,根据SAS可判定ABDACE;当BECD时,BEDECDDE,即BDCE,根据SAS可判定ABDACE;当BADCAE时,根据ASA可判定ABDACE综上所述ABCD均可判定ABDACE故选:ABCD【考点】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中2、ABC【解析】【分析】根据实数与数轴,有理数与无理数的定义,平方根和立方根的定义进行逐一判断即可【详解】解:A、有理数和数轴上的点不一一对应,数轴上的点也可以表示无理数,故该选项符合题意;

12、B. 不带根号的数不一定是有理数,例如是无理数,故该选项符合题意;C. 负数有立方根,故该选项符合题意;D. 是17的平方根,故此选项不符合题意;故选ABC【考点】本题主要考查了实数与数轴,有理数与无理数的定义,平方根和立方根的定义,解题的关键在于能够熟练掌握相关知识进行求解3、AC【解析】【分析】根据等边三角形的性质得到BC=AB=2,取AB的中点D,过点D作AB的垂线,在垂线上取点C,使BC=AB,AD=BD=1,利用勾股定理求出CD的长,由此得到答案【详解】解:等边三角形的顶点A,B的坐标分别是,BC=AB=2,取AB的中点D,过点D作AB的垂线,在垂线上取点C,使BC=AB,AD=BD

13、=1,顶点C的坐标可能是或,故选:AC【考点】此题考查等边三角形的性质,平面直角坐标系中点的坐标,勾股定理,熟记等边三角形的性质是解题的关键4、CD【解析】【分析】利用幂的运算法则可判断 利用平方差公式的特点可判断 利用同底数幂的除法判断 利用合并同类项可判断 从而可得答案.【详解】解:,故不符合题意;故不符合题意;故符合题意;故符合题意;故选:【考点】本题考查的是幂的运算,负整数指数幂的含义,平方差公式的应用,合并同类项,掌握以上运算的运算法则是解题的关键.5、ABD【解析】【分析】根据角平分线的性质得,等量代换得出,故A选项正确;根据角平分线性质得 ,又因为 即可得,故B选项正确;根据互余

14、的定义和性质可得与 互余的角有4个,故C选项错误;因为OC=OE=OD,所以点O是CD 的中点,故D选项正确;即可得出结果【详解】解:A,B分别是,的角平分线上的点,故A选项说法正确,符合题意;A,B分别是,的角平分线上的点, 又,故B选项说法正确,符合题意;,与互余,与互余,与互余,与互余,综上,与互余的角有4个,故C选项说法错误,不符合题意;OC=OE=OD,点O是CD 的中点,故D选项说法正确,符合题意;故选ABD【考点】本题考查了角平分线的性质,邻补角,余角的性质,线段的中点,解题的关键是掌握角平分线的性质,邻补角,余角的性质,线段的中点三、填空题1、x1【解析】【分析】根据分式中分母

15、不等于0列式求解即可.【详解】解:根据题意得, x-10,解得x1.故答案为: x1.【考点】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2、 ; 【解析】【分析】(1)根据数轴上表示的两个实数,右边的总比左边的大进行比较;(2)根据两个负数,绝对值大的反而小进行比较【详解】解:(1) ,3;(2) -3.143,-3.141,3.1433.141 -故答案为,【考点】本题考查了实数的大小比较,解题的关键是注意:正实数都大于0,负实数都小于0,正

16、实数大于一切负实数,两个负实数绝对值大的反而小3、0.8【解析】【分析】梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形,分别得出AO,A1O的长即可【详解】解:在RtABO中,根据勾股定理知,A1O= =4(m),在RtABO中,由题意可得:BO=1.4(m),根据勾股定理知,AO=4.8(m),所以AA1=AO-A1O=0.8(米)故答案为0.8【考点】本题考查勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用4、3【解析】【分析】利用全等三角形的判定定理和性质定理可得结果【详解】解:ABCF,A=FCE,B=

17、F,点E为BF中点,BE=FE,在ABE与CFE中,ABECFE(AAS),AB=CF=8,AD=5,BD=3,故答案为:3【考点】本题主要考查了全等三角形的判定定理和性质定理,熟练掌握定理是解答此题的关键5、169【解析】【分析】由题意知小正方形的边长为7设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解【详解】解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tan短边:长边a:b5:12所以ba,又以为ba+7,联立,得a5,b12所以大正方形的面积是:a2+b225+144169故答案是:169【考点】本题主要考查了解直角三角形、勾股定理的证明和

18、正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.四、解答题1、详见解析【解析】【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PDBCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作【考点】此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.2、(1)27;(2)4.5【解析】【分析】(1)根据三角形面积公式进行求解即可;(2)利用面积法进行求解即可【详解】解:(1)由题意得:(2),解得【考点】本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式3、,4【解析】【分

19、析】把分子、分母进行因式分解,先根据分式乘法法则计算,再根据分式加减法法则化简得出最简结果,最后代入求值即可【详解】=当时,原式【考点】本题考查分式的运算化简求值,熟练掌握分式的混合运算法则是解题关键4、(1)见解析;(2)见解析【解析】【分析】(1)根据等边对等角,在AB上取一点D使BD=BC=3,连接CD即可;(2)线段AB的垂直平分线与AC的交点E即为所求【详解】(1)如图所示,即为所求,(2)如图所示,即为所求,【考点】本题考查了作图-应用与设计作图,等腰三角形的性质,线段的垂直平分线的性质等知识,熟练运用等腰三角形的性质,线段垂直平分线的性质是解题的关键5、(1)见解析;(2)见解析;(3)若 ,则,理由见解析【解析】【分析】(1)首先利用SAS证明,即可得出结论;(2)利用全等三角形的性质和等量代换即可得出,从而有,则结论可证;(3)直接根据等腰三角形三线合一得出,又因为,则结论可证【详解】解答:(1)证明:, 在和中, ;(2)证明:,即,;(3)若 ,则理由如下:,BE是中线,【考点】本题主要考查全等三角形的判定及性质,等腰三角形的性质,掌握全等三角形的判定及性质和等腰三角形的性质是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1