收藏 分享(赏)

2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx

上传人:a**** 文档编号:634231 上传时间:2025-12-12 格式:DOCX 页数:23 大小:377.79KB
下载 相关 举报
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第1页
第1页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第2页
第2页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第3页
第3页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第4页
第4页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第5页
第5页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第6页
第6页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第7页
第7页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第8页
第8页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第9页
第9页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第10页
第10页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第11页
第11页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第12页
第12页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第13页
第13页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第14页
第14页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第15页
第15页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第16页
第16页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第17页
第17页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第18页
第18页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第19页
第19页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第20页
第20页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第21页
第21页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第22页
第22页 / 共23页
2022-2023学年京改版八年级数学上册期末专题测评试题 卷(Ⅲ)(含答案详解).docx_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册期末专题测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,已知,以两点为圆心,大于的长为半径画圆,两弧相交于点,连接与相较于点,则的周长为()A8B10C11D132

2、、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A1个B2个C3个D4个3、三个等边三角形的摆放位置如图所示,若,则的度数为()ABCD4、已知a为整数,且为正整数,求所有符合条件的a的值的和()A8B12C16D105、下列计算中,结果正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、在直角三角形中,若两边的长分别为1,2,则第三边的边长为()A3BCD12、下列说法中不正确的是()A带根号的数是无理数B无理数不能在数轴上表示出来C无理数是无限小数D无限小数是无理数3、在ABC和ABC中,已知A=A,AB=AB,下面判断中正确的是()A若添加条件AC=

3、AC,则ABCABCB若添加条件BC=BC,则ABCABCC若添加条件B=B,则ABCABCD若添加条件 C=C,则ABCABC4、如图,点P在AOB的平分线上,若使AOPBOP,则需添加的一个条件是()AOA=OBBAP=BPCAOP=BOPDAPO=BPO5、如图,1=2,C=D,AC与BD相交于点E,下列结论中正确的是()ADAE=CBEBDEACEBCCE=DADEAB是等腰三角形第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,的度数为_2、公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个

4、大正方形,如果小正方形面积是49,直角三角形中较小锐角的正切为,那么大正方形的面积是_3、+_4、计算的结果是_5、如图,若,则线段长为_ 四、解答题(5小题,每小题8分,共计40分)1、计算:(1)(2)2、计算:(1)()3()2(2)()3、阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题请看这个例题:如图1,在四边形ABCD中,BAD=BCD=90,AB=AD,若AC=2cm,求四边形ABCD的面积解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明BAEDAC,根据全等三角形的性质得AE=AC=2, EAB=CAD,则EAC=EAB+BAC=D

5、AC+BAC=BAD=90,得S四边形ABCD=SABC+SADC=SABC+SABE=SAEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2(2)请你用上面学到的方法完成下面的习题如图2,已知FG=FN=HM=GH+MN=2cm,G=N=90,求五边形FGHMN的面积4、如图,在ABC中,ACB=90,A=30,AB的垂直平分线分别交AB和AC于点D,E. (1)求证:AE=2CE;(2)连接CD,请判断BCD的形状,并说明理由.5、如图,在ABC和DCB中,AD90,ACBD,AC与BD相交于点O,限用无刻度直尺

6、完成以下作图:(1)在图1中作线段BC的中点P;(2)在图2中,在OB、OC上分别取点E、F,使EFBC-参考答案-一、单选题1、A【解析】【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到BDC的周长=AC+BC【详解】由作法得MN垂直平分AB,DA=DB,BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8故选A【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)也考查了线段垂直平分线的性质2、A【解析】【

7、分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.3、B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角均等于60,用表示出中间三角形的各内角,再根据三角形的内角和即可得出答案【详解】解:如图所示,图中三个等边三角形,由三角形的内角和定理可知:,即,又,故答案选B【考点】本题考查等边三角形的性质及三角形的内角和定

8、理,熟悉等边三角形各内角均为60是解答此题的关键4、C【解析】【分析】首先对于分式进行化简,然后根据a为整数、分式值为正整数可求出a的值,最后将a的所有值相加即可【详解】解:,a为整数,且分式的值为正整数,a51,5,a6,10,所有符合条件的a的值的和:6+1016故选:C【考点】本题考查了分式的混合运算,对分式的分子和分母能够正确分解因式是解题的关键5、C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,即可一一判定【详解】解:A.,故该选项不正确,不符合题意;B.,故该选项不正确,不符合题意;C.,故该选项正确,符合题意;D.,故该选项不正确,不符合

9、题意;故选:C【考点】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根,熟练掌握和运用各运算法则是解决本题的关键二、多选题1、BC【解析】【分析】分两种情况讨论:当第三边为直角边或斜边时,再利用勾股定理可得结论.【详解】解:当直角三角形的第三边为斜边时:则第三边为:当直角三角形的第三边为直角边时,则为斜边,则第三边为: 故第三边为:或.故选:【考点】本题考查的是勾股定理的应用,有清晰的分类讨论思想是解题的关键.2、ABD【解析】【分析】举出反例如,循环小数1.333,即可判断A、D;根据数轴上能表示任何一个实数即可判断B;根据无理数的定义即可判断C【详解】解:A、如

10、2,不是无理数,故本选项错误,符合题意;B、数轴上的点与实数一一对应,无理数都能在数轴上表示出来,故本选项错误,符合题意;C、无理数是无限不循环小数,即无理数都是无限小数,故本选项正确,不符合题意;D、如1.33333333,是无限循环小数,是有理数,故本选项错误,符合题意;故选:ABD【考点】本题考查了对无理数的意义的理解和运用,无理数包括:开方开不尽的数,含的,一些有规律的数3、ACD【解析】【分析】已知两个三角形的一组角和角的一组边相等,可添加已知角的另一组边相等,利用SAS判定三角形全等,也可以添加另外两个角中任意一组角相等,利用AAS或ASA判定三角形全等【详解】解:A选项,添加条件

11、AC=AC,可利用SAS判定则ABCABC,选项正确,符合题意;B选项,添加条件BC=BC,不能判定两个三角形全等,选项不正确;C选项,添加条件B=B,可利用ASA判定ABCABC,选项正确,符合题意;D选项,添加条件C=C,可利用AAS判定ABCABC, 选项正确,符合题意;故选ACD【考点】本题主要考查全等三角形的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理4、AD【解析】【分析】由已知可知一边一角对应相等,再结合各选项根据全等三角形的判定方法逐一进行判断即可【详解】点P在AOB的平分线上, ,又有 ,A、若 ,可用边角边证明AOPBOP,故本选项符合题意;B、若 ,是边边角,

12、不能证明AOPBOP,故本选项不符合题意;C、若,只有一对角,一对边对应相等,不能证明AOPBOP,故本选项不符合题意;D、若 ,可用角边角证明AOPBOP,故本选项符合题意;故选:AD【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、边边边是解题的关键5、ABD【解析】【分析】A、首先用AAS定理证明,进而得到,再由,可得到;B、由,即可得到,可得结论;C、可以直接由判断出此选项;D、根据,即可判断;【详解】A、在中:, ;故A正确;B、;在中,故B正确;C、,故C错误;D、,是等腰三角形,故D正确;故选ABD【考点】此题考查了三角形全等的判定定理以及性质,

13、等腰三角形的性质。关键是要把握三角形全等的判定定理:SSS、ASA、SAS、AAS三、填空题1、【解析】【分析】根据全等三角形的性质求出EADCAB,求出DABEAC=50,即可得到BAC的度数【详解】解:ABCADE,EADCAB,EADCADCABCAD,EACDAB,EAB125,CAD25,DABEAC=(12525)50,BAC50+2575故答案为:75【考点】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键2、169【解析】【分析】由题意知小正方形的边长为7设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解【详解】解:由题意知,小正方形的边长为7,

14、设直角三角形中较小边长为a,较长的边为b,则tan短边:长边a:b5:12所以ba,又以为ba+7,联立,得a5,b12所以大正方形的面积是:a2+b225+144169故答案是:169【考点】本题主要考查了解直角三角形、勾股定理的证明和正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.3、7【解析】【分析】本题涉及平方、三次根式化简2个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】解:(3)2+927故答案为7【考点】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握平方、三次根式等考点的

15、运算4、【解析】【分析】先通分,再相加即可求得结果【详解】解:,故答案为:【考点】此题考察分式的加法,先通分化为同分母分式再相加即可5、8【解析】【分析】过点D作DHAC于H,由等腰三角形的性质可得AH=HC,DAC=DCA=30,由直角三角形的性质可证DH=CF,由“AAS”可证DHEFCE,可得EH=EC,即可求解【详解】解:如图,过点D作DHAC于H, 在DHE和FCE中, 故答案为8【考点】本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是解题的关键四、解答题1、 (1)(2)【解析】【分析】(1)根据绝对值的性质、立方根的定义进行计算;(2)根据算术平

16、方根的性质、绝对值的性质、立方根的定义以及乘方得到结果(1)解:原式 ;(2)解:原式 【考点】本题考查了实数的综合运算能力,解决此题的关键是熟练掌握绝对值、算术平方根和立方根的运算2、(1);(2)【解析】【分析】(1)先计算乘方、将除法转化为乘法,再约分即可得;(2)先计算括号内异分母分式的减法、除法转化为乘法,再约分即可得【详解】解:(1)原式();(2)原式【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则3、(1)2;(2)4【解析】【分析】(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(

17、1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解【详解】(1)由题意知,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示: FG=FN=HM=GH+MN=2cm,G=N=90,FNK=FGH=90,FH=FK,又FM=FM,HM=KM=MN+GH=MN+NK,MK=FN=2cm,【考点】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用4、见解析【解析】【分析】(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得ABE=A;结合三角形外角的性质可得BEC的度数,再在RtBCE中结合含30角的直角三角形

18、的性质,即可证明第(1)问的结论;(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到ABC=60,至此不难判断BCD的形状【详解】(1)证明:连结BE,如图DE是AB的垂直平分线,AEBE,ABEA30,CBEABCABE30,在RtBCE中,BE2CE,AE2CE.(2)解:BCD是等边三角形理由如下:DE垂直平分AB,D为AB的中点ACB90,CDBD.又ABC60,BCD是等边三角形【考点】此题考查了线段垂直平分线的性质、30角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30角的直角三角形的性质是

19、解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,5、(1)见解析;(2)见解析.【解析】【分析】(1)延长BA和CD,它们相交于点Q,然后延长QO交BC于P,则PB=PC,根据线段垂直平分线的逆定理可证明;(2)连结AP交OB于E,连结DP交OC于F,则EFBC分别证明BEPCFP,BEPCFP可得APB=DPC和PEF=PFE,根据三角形内角和定理和平角的定义可得APB=PEF,即可证明EF/BC.【详解】解:(1)如图1,点P为所作,理由如下:AD90,ACBD,BC=CB,ABCDCBABC=DCB,ACB=DBCQB=QC,OB=OCQ,O在BC的垂直平分线上,延长QO交BC于P,就有P为线段BC的中点;(2)如图2,EF为所作理由如下:ABCDCBAB=DC,又ABC=DCB,BP=PCABPDCPAPB=DPC又DBC=ACB,BP=PCBEPCFPPE=PFPEF=PFE,APB+DPC+APD=180PEF+PFE+APD=180APB=PEFEF/BC.【考点】本题考查作图复杂作图,等腰三角形的性质,线段垂直平分线的逆定理,平行线的判定定理,全等三角形的判定与性质. 掌握相关定理并能熟练运用是解决此题的关键.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1