1、京改版八年级数学上册期中综合复习试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列说法中,正确的是()A无理数包括正无理数、零和负无理数B无限小数都是无理数C正实数包括正有理数和正无理数D实数可以分为
2、正实数和负实数两类2、若有意义,则(n)2的平方根是()ABCD3、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限B第二象限C第三象限D第四象限4、化简的结果是()A5BCD5、下列计算正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、已知,则的大小关系是()ABCD2、下列等式不成立的是()ABCD3、以下几个数中无理数有()ABCDE4、下列各式中,当x取某一值时没有意义的是()ABCD5、下列各组数中,不互为相反数的是()A-2与B与C与D 与第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、化简:(1_2、对于实数,定义运算若,则
3、_3、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数示例:即4+3=7,则(1)用含x的式子表示m_;(2)当y2时,n的值为_4、若,则的值等于_5、在,0.5,0,这些数中,是无理数的是_四、解答题(5小题,每小题8分,共计40分)1、化简(1)(2)2、计算:(1)(2)3、根据已学知识,我们已经能比较有理数的大小,下面介绍一种新的比较大小的方法:3210,32;(2)130,21;(2)(2)0,22像上面这样,根据两数之差是正数、负数或0,判断两数大小关系的方法叫做作差法比较大小(1)请将上述比较大小的方法用字母表示出来:若,则_;若,则_;若,则_;(2)请用上述方法比
4、较下列代数式的大小(直接在空格中填写答案)_;当时,_;(3)试比较与的大小,并说明理由4、如果一个正数m的两个平方根分别是2a3和a9,求2m2的值5、求下列各式的值:(1);(2)-参考答案-一、单选题1、C【解析】【分析】根据实数的概念即可判断【详解】解:(A)无理数包括正无理数和负无理数,故A错误;(B)无限循环小数是有理数,无限不循环小数是无理数,故B错误;(D)实数可分为正实数,零,负实数,故D错误;故选C【考点】本题考查实数的概念,解题关键是正确理解实数的概念,本题属于基础题型2、D【解析】【详解】试题解析:有意义, 解得: 的平方根是: 故选D3、D【解析】【分析】依据即可得到
5、 进而得到直线不经过的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象限故选D【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数4、A【解析】【分析】先进行二次根式乘法,再合并同类二次根式即可【详解】解: ,故选择A【考点】本题考查二次根式乘除加减混合运算,掌握二次根式混合运算法则是解题关键5、D【解析】【分析】根据二次根式的乘法运算法则对A、D选项进行判断,根据算术平方根的意义对B选项进行判断,根据积的乘方对C选项进行判断【详解】解: ,故A选项错误,D选项正确;,故B选项错误;,故C选项错误故选:D【考点】本题
6、考查二次根式的运算及积的乘方熟练掌握各运算法则是解题关键二、多选题1、AD【解析】【分析】先根据幂的运算法则进行计算,再比较实数的大小即可得出结论【详解】 故不符合题意,符合题意,故选择:AD【考点】此题主要考查幂的运算,解题的关键是正确理解零指数幂以及负指数幂的运算法则2、ABD【解析】【分析】根据分式乘方的运算法则逐一计算即可得【详解】解:A、,错误;B、,错误;C、,正确;D、,错误故选ABD【考点】此题考查了分式的乘方,熟练掌握运算法则是解本题的关键3、BE【解析】【分析】根据有理数和无理数的定义逐项判断即可得【详解】解:A、,2是有理数,此项不符题意;B、是无理数,此项符合题意;C、
7、是分数,属于有理数,此项不符题意;D、是无限循环小数,是有理数,此项不符题意;E、是无理数,此选项符合题意;故选BE【考点】本题考查了无理数和有理数的定义,熟记定义是解题关键4、ABC【解析】【分析】根据分式有意义,分母不等于0对各选项分析判断即可得解【详解】解:A、当x=-即2x+1=0时,分式无意义,故本选项符合题意;B、当x=-即2x+1=0时,分式无意义,故本选项符合题意;C、当x=0即=0时,分式无意义,故本选项符合题意;D、无论x取何值,2x2+11,分式都有意义,故本选项不符合题意;故选:ABC【考点】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义
8、分母为零;(2)分式有意义分母不为零5、ABD【解析】【分析】先化简,然后根据相反数的意义进行判断即可得出答案【详解】解:A. 与不是一组相反数,故本选项符合题意;B. =,所以与 不是一组相反数,故本选项符合题意;C. =2,=-2,所以与是一组相反数,故本选项不符合题意;D. =-2,=-2,所以与不是一组相反数,故本选项符合题意故选ABD【考点】本题考查了相反数,平方根,立方根等知识,能将各数化简并正确掌握相反数的概念是解题关键三、填空题1、【解析】【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果【详解】(1+)=,故答案为.【考点】本题考查分式的混合运算,解答本题的关
9、键是明确分式的混合运算的计算方法2、【解析】【分析】根据给出的新定义分别求出与的值,根据得出关于a的一元一次方程,求解即可【详解】解:,解得,故答案为:【考点】本题考查解一元一次方程、新定义下实数的运算等内容,理解题干中给出的新定义是解题的关键3、 【解析】【分析】(1)根据题意,可以用含x的式子表示出m;(2)根据图形,可以用x的代数式表示出y,列出关于x的分式方程,从而可以求得x的值,进而得到n的值【详解】解:(1)由图可得, 故答案为:;(2),解得,故答案为:【考点】本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,列出相应的代数式及分式方程及求出方程的解4、【解析】【分析】
10、先把分式进行化简,再代入求值【详解】=当a=时,原式=故答案为【考点】分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键5、【解析】【分析】根据无理数的概念:无限不循环小数是无理数进行分类即可【详解】在,0.5,0,这些数中,只有是无理数,其余都是有理数故答案为:【考点】本题考查了实数的分类,关键是掌握无理数的概念:无限不循环小数是无理数四、解答题1、(1);(2)【解析】【分析】(1)分式的约分计算,注意约分结果应为最简分式;(2)分式的约分,先将分子分母的多项式进行因式分解,然后再进行约分【详解】解:(1)(2)【考点】本题考查分式的约分,掌握运算法则准确
11、计算是解题关键2、 (1)(2)【解析】【分析】(1)根据绝对值的性质、立方根的定义进行计算;(2)根据算术平方根的性质、绝对值的性质、立方根的定义以及乘方得到结果(1)解:原式 ;(2)解:原式 【考点】本题考查了实数的综合运算能力,解决此题的关键是熟练掌握绝对值、算术平方根和立方根的运算3、 (1),=,(2),(3),理由见详解【解析】【分析】(1)根据作差法可作答;(2)利用作差法即可作答;(3)结合整式的加减混合运算法则,利用作差法即可作答;(1),;,;,故答案为:、=、;(2),;,又,故答案为:、;(3),理由如下:,又,【考点】本题考查了实数比较大小、二次根式的加减混合运算、
12、整式的加减混合运算等知识,掌握相关的加减混合运算法则是解答本题的关键4、48【解析】【分析】根据一个正数的两个平方根互为相反数求出a的值,利用平方根和平方的关系求出m,再求出2m-2的值【详解】解:一个正数的两个平方根分别是2a3和a9,(2a3)+(a9)=0,解得a= 4,这个正数为(2a3) 2=52=25,2m2=2252= 48;故答案为48.【考点】本题考查平方根.5、(1);(2)0【解析】【分析】(1)根据立方根定义先将原式中的和计算出来,然后再相加即可得到结果;(2)根据立方根定义先将原式中的、和计算出来,然后再加减即可得到结果【详解】(1);(2)【考点】本题考查立方根,熟练掌握立方根的性质是解决本题的关键