1、京改版八年级数学上册期中模拟考试题卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、计算的结果是()ABCD2、有下列说法:无理数是无限小数,无限小数是无理数;无理数包括正无理数、和负无理数;带根号的数
2、都是无理数;无理数是含有根号且被开方数不能被开尽的数;是一个分数其中正确的有()A个B个C个D个3、方程的解是()Ax2Bx1Cx1Dx34、当x2时,分式的值是()A15B3C3D155、下列四个实数中,是无理数的为()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列说法中其中不正确的有()A无限小数都是无理数B无理数都是无限小数C-2是4的平方根D带根号的数都是无理数2、下列计算不正确的是()ABCD3、根据分式的基本性质,分式可变形为()ABCD4、下列运算正确的是 ABCD5、下列数中不是无理数的是()ABC0.37373737D第卷(非选择题 65分)三、填空题(5小题,
3、每小题5分,共计25分)1、如果分式值为零,那么x_2、已知,则的值是_3、化简:_;_;_.4、一个正数a的两个平方根是和,则的立方根为_5、将下列各数填入相应的括号里:整数集合;负分数集合;无理数集合四、解答题(5小题,每小题8分,共计40分)1、徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?2、计算(1) ;(2)3、甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的 1.5 倍,两人各加工 600 个
4、这种零件,甲比乙少用 5 天(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成如果总加工费不超过 7800 元,那么甲至少加工了多少天?4、计算:(1)(2020)02+|1|(2)5、计算:(1);(2)-参考答案-一、单选题1、A【解析】【详解】原式故选A.2、A【解析】【分析】根据无理数、分数的概念判断【详解】解:无限不循环小数是无理数,错误是有理数,错误是有理数,错误也是无理数,不含根号,错误是一个无理数,不是分数,错误故选:【
5、考点】本题考查实数的概念,掌握无理数是无限不循环小数是求解本题的关键3、D【解析】【分析】根据解分式方程的方法求解,即可得到答案【详解】 经检验,当时,与均不等于0方程的解是:x3故选:D【考点】本题考查了解分式方程的知识点;解题的关键是熟练掌握分式方程的解法,从而完成求解4、A【解析】【分析】先把分子分母进行分解因式,然后化简,最后把代入到分式中进行正确的计算即可得到答案.【详解】解:把代入上式中原式故选A.【考点】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握相关知识点进行求解运算.5、D【解析】【分析】根据无理数的定义“也称为无限不循环小数,不能写作两整数之比”即可【详解】由无
6、理数的定义得:四个实数中,只有是无理数故选:D【考点】本题考查了无理数的定义,熟记定义是解题关键二、多选题1、AD【解析】【分析】无理数是无限不循环小数,无限小数包括无限循环小数和无限不循环小数,无理数有三类,分别是:含有根号,开根开不尽的一类数;含有的一类数;以无限不循环小数的形式出现的特定结构的数,4的平方根有两个,互为相反数,根据相关定义逐一判断即可【详解】解:A、无理数是无限不循环小数,无限小数包括无限不循环小数和无限循环小数,选项A错误;B、无理数是无限不循环小数,属于无限小数,选项B正确;C、4的平方根分别是2和-2,所以-2是4的平方根,选项C正确;、带根号,且开方开不尽的是无理
7、数,选项错误故选:AD【考点】本题考查无理数的定义,无限小数的分类,和无理数的分类,以及平方根的定义,根据相关知识点判断是解题关键2、ABD【解析】【分析】根据根式的性质即可化简求值【详解】解:A、是最简二次根式,不能再化简,故A符合题意;B、=,故B符合题意;C、,故C不符合题意;D. 根据二次根式乘法法则的条件知,D中所给的算式、无意义,故D符合题意;故选ABD【考点】本题考查了利用二次根式的性质进行化简,属于简单题,熟悉二次根式的性质是解题关键3、AD【解析】【分析】根据分式的基本性质即可求出答案【详解】原式=,故选AD【考点】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,
8、本题属于基础题型4、AB【解析】【分析】根据完全平方公式、负数指数幂、分式的化简、根式的化简分别计算解答即可【详解】解:A、,选项运算正确;B、,选项运算正确;C、是最简分式,选项运算错误;D、,选项运算错误;故选:AB【考点】此题综合考查了代数式的运算,关键是掌握代数式运算各种法则解答5、ABC【解析】【分析】根据无理数的定义:无限不循环小数即为无理数,据此判断即可【详解】解:A、是分数,不是有理数,符合题意;B、是整数,不是有理数,符合题意;C、0.37373737是有限小数,不是无理数,符合题意;D、是无理数,不符合题意故选:ABC【考点】本题考查了有理数,熟知定义是解本题的关键三、填空
9、题1、1【解析】【分析】直接利用分式的值为零在分子为零进而得出答案【详解】解:分式值为零,x10,解得:x1故答案为:1【考点】此题主要考查了分式的值为零的条件,正确把握定义是解题关键2、【解析】【分析】由条件,先求出的值,再根据平方根的定义即可求出的值【详解】解:,故答案为:【考点】本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键3、 4 【解析】【分析】利用二次根式化简即可;利用二次根式的乘法法则进行计算即可;先把各个二次根式化简成最简二次根式,然后进行减法计算即可.【详解】故填(1). 4(2). (3). 【考点】本题考查二次根式化简
10、以及计算,熟练掌握运算法则是解题关键.4、2【解析】【分析】根据一个正数的平方根互为相反数,将和相加等于0,列出方程,解出b,再将b代入任意一个平方根中,进行平方运算求出这个正数a,将算出后,求立方根即可【详解】和是正数a的平方根,解得 ,将b代入,正数 ,的立方根为:,故填:2【考点】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数5、见解析【解析】【分析】先化简,后根据整数包括正整数,0,负整数;负分数,无理数的定义去判断解答即可【详解】-|-0.7|=-0.7,是负分数,-(-9)=9,是整数,是负分数,0是整数,8是整数,-2是整数,是无理数,
11、是正分数,是无限不循环小数,是无理数,是无限循环小数,是有理数,是负分数,整数集合-(-9),0,8, -2 ;负分数集合-|-0.7|, , ;无理数集合, 故答案为:-(-9),0,8,-2;-|-0.7|, ,;,【考点】本题考查了有理数,无理数,熟练掌握各数的定义,特征,并合理化简判断是解题的关键四、解答题1、A车行驶的时间为3.5小时,B车行驶的时间为2.5小时【解析】【分析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解分式方程即可,注意验根.【详解】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解得:t=2.5
12、,经检验,t=2.5是原分式方程的解,且符合题意,1.4t=3.5答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时【考点】本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.2、 (1);(2)【解析】【分析】(1)首先化简二次根式,之后进行实数的加减运算即可;(2)首先化简二次根式、计算零次幂,去绝对值,最后进行实数加减运算即可(1)解:原式;(2)解:原式【考点】本题主要考查实数的运算,掌握二次根式的化简、零次幂运算、绝对值的性质是解题的关键3、(1)乙每天加工40个幂件,甲每天加工60个件;(2)甲至少加工40天.【解析】【分析】(1)设乙每天加工x
13、个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可【详解】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件化简得6001.5=600+51.5x解得x=401.5x=60经检验,x=40是分式方程的解且符合实际意义答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得 由得y=75-1.5x 将代入得150x+120(75-1.5x)7800解得x40,当x=40时,y=15,符合问题的实际意义
14、答:甲至少加工了40天【考点】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大4、解得:y=答:苏老师追上大巴的地点到基地的路程有30公里【考点】本题考查了分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程30(1)-2;(2)4【解析】【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可【详解】解:(1)原式=;(2)原式=4【考点】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键5、(1);(2)【解析】【分析】(1)根据乘法分配律相乘,再化简二次根式即可;(2)先用完全平方公式进行计算,再合并即可【详解】解:(1)= =(2) =【考点】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行准确计算