1、1已知函数f(x)exax1,aR.(1)若f(x)在区间(1,2)上单调,求a的取值范围;(2)设a0,求证:x0时,f(x)x2.2已知函数f(x).(1)若f(x)在x2处的切线的斜率为1ln 2,求实数a的值;(2)x1,不等式f(x)恒成立,求整数a的最大值3(2019重庆质检)已知函数f(x)x2aln x(aR)(1)讨论f(x)的单调性;(2)当a1时,f(x)0时,f(x)(2x1)答案精析1(1)解易知 f(x)exa是增函数又f(x)在区间(1,2)上单调,f(1)ea0或f(2)e2a0. ae或ae2.即a的取值范围是(,ee2,)(2)证明设g(x)f(x)x2ex
2、ax1x2.g(x)exa2x,设(x)exa2x,(x)ex2.x(,ln 2)时,(x)0,(x)是增函数,xln 2时,(x)min2a2ln 22lna.a0,(x)min2lna0,即g(x)0.g(x)f(x)x2在0,)上是增函数g(x)g(0)f(0)0,即f(x)x2.2解(1)f(x),由题意得f(2)ln 21ln 2,则a2.(2)不等式可化为a1时,g(x)10,则g(x)在(1,)上单调递增又g(3)1ln 30,则g(x)在(3,4)上存在唯一零点x0满足g(x0)x0ln x020.则当x(1,x0)时,h(x)单调递减,当x(x0,)时,h(x)单调递增,则h
3、(x)minh(x0).又因为x0ln x020,则h(x0)x0,因为x0(3,4),则a0),当a0时,f(x)0,则f(x)在(0,)上单调递增当a0时,f(x)x.所以当0x时,f(x)时,f(x)0.综上所述,当a0时,f(x)的单调递增区间为(0,),无单调递减区间;当a0时,f(x)的单调递增区间为(,),单调递减区间为(0,)(2)当a1时,f(x)1),则g(x)2x2x.当x1时,g(x)0,g(x)在(1,)上是增函数,x1时,g(x),从而g(x)0,即x3x2ln x0,所以x2ln x1时,x2ln x1,即a4时,令f(x)3a或x4时,函数f(x)的减区间为(,3a),(1,)(2)证明由题意有f(x),要证f(x)(2x1)(x0),只要证(2x1)exe(x2x1)0(x0)令g(x)(2x1)exe(x2x1)(x0),有g(x)(2x1)exe(2x1)(2x1)(exe),当0x1时,g(x)1时,g(x)0,则函数g(x)的增区间为(1,),减区间为(0,1),则g(x)ming(1)0,故当x0时,g(x)0.故不等式f(x)(2x1)成立