收藏 分享(赏)

2021二年级数学上册 七 表内乘法和除法(二)第8课时 用7的乘法口诀求商(冯 诺依曼)拓展资料 冀教版.docx

上传人:a**** 文档编号:609147 上传时间:2025-12-11 格式:DOCX 页数:1 大小:11.33KB
下载 相关 举报
2021二年级数学上册 七 表内乘法和除法(二)第8课时 用7的乘法口诀求商(冯 诺依曼)拓展资料 冀教版.docx_第1页
第1页 / 共1页
亲,该文档总共1页,全部预览完了,如果喜欢就下载吧!
资源描述

1、冯诺依曼20世纪最杰出的数学家之一的冯诺依曼众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步鉴于冯诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为计算机之父.1911年一1921年,冯诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯诺依曼还不到18岁. 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大

2、帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称智慧之都的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研几何原本。祖冲之在数学上的杰出成就,是关于圆周率的计算秦汉以前,人们以径一周三做为圆周率,这就是古率后来发现古率误差太大,圆周率应是圆径一而周三有余,不过究竟余多少,意见不一直到三国时期,刘徽提出了计算圆周率的科学方法-割圆术,用圆内接正多边形的周长来逼近圆周长刘徽计

3、算到圆内接96边形,求得=3.14,并指出,内接正多边形的边数越多,所求得的值越精确祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出在3.1415926与3.1415927之间并得出了分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近值的分数祖冲之究竟用什么方法得出这一结果,现在无从考查若设想他按刘徽的割圆术方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了为了纪念祖冲之的杰出贡献,有些外国数学史家建议把=叫做祖率塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1