收藏 分享(赏)

《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc

上传人:高**** 文档编号:555191 上传时间:2024-05-29 格式:DOC 页数:10 大小:133KB
下载 相关 举报
《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc_第1页
第1页 / 共10页
《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc_第2页
第2页 / 共10页
《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc_第3页
第3页 / 共10页
《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc_第4页
第4页 / 共10页
《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc_第5页
第5页 / 共10页
《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc_第6页
第6页 / 共10页
《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc_第7页
第7页 / 共10页
《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc_第8页
第8页 / 共10页
《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc_第9页
第9页 / 共10页
《步步高》2015高考数学(广东专用理)一轮题库:第11章 第2讲变量间的相关关系与统计案例.doc_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第2讲 变量间的相关关系与统计案例一、选择题1有五组变量:汽车的重量和汽车每消耗1升汽油所行驶的平均路程;平均日学习时间和平均学习成绩;某人每日吸烟量和身体健康情况;圆的半径与面积;汽车的重量和每千米耗油量其中两个变量成正相关的是()A B C D解析 由变量的相关关系的概念知,是正相关,是负相关,为函数关系,故选C.答案 C2已知x,y取值如下表:x014568y1.31.85.66.17.49.3从所得的散点图分析可知:y与x线性相关,且0.95xa,则a()A1.30 B1.45 C1.65 D1.80解析依题意得,(014568)4,(1.31.85.66.17.49.3)5.25.又

2、直线0.95xa必过样本中心点(,),即点(4,5.25),于是有5.250.954a,由此解得a1.45,选B.答案B3在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是()A100个吸烟者中至少有99人患有肺癌B1个人吸烟,那么这人有99%的概率患有肺癌C在100个吸烟者中一定有患肺癌的人D在100个吸烟者中可能一个患肺癌的人也没有解析统计的结果只是说明事件发生可能性的大小,具体到一个个体不一定发生答案D4某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)4235销售额y(万元)

3、49263954根据上表可得回归方程x中的为9.4,据此模型预报广告费用为6万元时销售额为 ()A63.6万元 B65.5万元C67.7万元 D72.0万元解析3.5(万元),42(万元),429.43.59.1,回归方程为9.4x9.1,当x6(万元)时,9.469.165.5(万元)答案B5为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x/cm174176176176178儿子身高y/cm175175176177177则y对x的线性回归方程为 ()Ayx1 Byx1Cy88x Dy176解析由题意得176(cm),176(cm),由于(,)一定满足线性回归方程,

4、经验证知选C.答案C6已知数组(x1,y1),(x2,y2),(x10,y10)满足线性回归方程bxa,则“(x0,y0)满足线性回归方程bxa”是“x0,y0”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解析x0,y0为这10组数据的平均值,又因为线性回归方程bxa必过样本中心(,),因此(,)一定满足线性回归方程,但满足线性回归方程的除了(,)外,可能还有其他样本点答案B二、填空题7已知施化肥量x与水稻产量y的试验数据如下表,则变量x与变量y是_相关(填“正”或“负”).施化肥量x15202530354045水稻产量y330345365405445450455

5、解析因为散点图能直观地反映两个变量是否具有相关关系,所以画出散点图如图所示:通过观察图象可知变量x与变量y是正相关 答案正8考古学家通过始祖鸟化石标本发现:其股骨长度x(cm)与肱骨长度y(cm)的线性回归方程为1.197x3.660,由此估计,当股骨长度为50 cm时,肱骨长度的估计值为_ cm.解析根据线性回归方程1.197x3.660,将x50代入得y56.19,则肱骨长度的估计值为56.19 cm.答案56.199某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2

6、2列联表计算得K23.918,经查临界值表知P(K23.841)0.05.则下列结论中,正确结论的序号是_有95%的把握认为“这种血清能起到预防感冒的作用”;若某人未使用该血清,那么他在一年中有95%的可能性得感冒;这种血清预防感冒的有效率为95%;这种血清预防感冒的有效率为5%.解析 K23.9183.841,而P(K23.841)0.05,所以有95%的把握认为“这种血清能起到预防感冒的作用”;但检验的是假设是否成立和该血清预防感冒的有效率是没有关系的,不是同一个问题,不要混淆,正确序号为.答案 10某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm和18

7、2 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_ cm.解析由题意父亲身高x cm与儿子身高y cm对应关系如下表:x173170176y170176182则173,176,(xi)(yi)(173173)(170176)(170173)(176176)(176173)(182176)18,(xi)2(173173)2(170173)2(176173)218.1. 1761733.线性回归直线方程xx3.可估计孙子身高为1823185(cm)答案185三、解答题7某班主任对全班50名学生进行了作业量多少的调查数据如下表:认为作业多认为作业不多合计喜欢玩游戏

8、189不喜欢玩游戏815合计(1)请完善上表中所缺的有关数据;(2)试通过计算说明在犯错误的概率不超过多少的前提下认为喜欢玩游戏与作业量的多少有关系?附:P(K2k0)0.050.0250.0100.0050.001k03.8415.0246.6357.87910.828K2解(1)认为作业多认为作业不多合计喜欢玩游戏18927不喜欢玩游戏81523合计262450(2)将表中的数据代入公式K2得到K2的观测值k5.0595.024,查表知P(K25.024)0.025,即说明在犯错误的概率不超过0.025的前提下认为喜欢玩游戏与作业量的多少有关系8下表提供了某厂节能降耗技术改造后生产甲产品过

9、程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.x3456y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程x;(3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:32.5435464.566.5)解(1)由题设所给数据,可得散点图如图所示(2)由对照数据,计算得:86,4.5(吨),3.5(吨)已知iyi66.5,所以,由最小二乘法确定的回归方程的系数为:0.7,3.50.74.50.35.因此,所

10、求的线性回归方程为0.7x0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:90(0.71000.35)19.65(吨标准煤)5某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期12月1日12月2日12月3日12月4日12月5日温差x/101113128发芽数y/颗2325302616该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验(1)求选取的2组数据恰好

11、是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程x.解(1)设抽到不相邻两组数据为事件A,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以P(A)1.(2)由数据,求得12,27.112513301226977,112132122434,由公式,求得, 3.所以y关于x的线性回归方程为x3.6有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.优秀非优秀总计甲班10乙班30合计105已知从全部10

12、5人中随机抽取1人为优秀的概率为.(1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号试求抽到6号或10号的概率附K2,P(K2k)0.050.01k3.8416.635解(1)优秀非优秀总计甲班104555乙班203050合计3075105(2)根据列联表中的数据,得到k6.1093.841,因此有95%的把握认为“成绩与班级有关系”(3)设“抽到6号或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y),则所有的基本事件有(1,1)、(1,2)、(1,3)、(6,6),共36个事件A包含的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),(4,6),(5,5),(6,4),共8个,P(A).

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3