1、课时限时检测(六十七)合情推理与演绎推理(时间:60分钟满分:80分)一、选择题(每小题5分,共30分)1如图1122是某年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()图1122【答案】A2观察(x2)2x,(x4)4x3,(cos x)sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(x)f(x),记g(x)为f(x)的导函数,则g(x)()Af(x)Bf(x)Cg(x)Dg(x)【答案】D3正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin(x21)是奇函数,以上推理()A结论正确B大前提不正确C小前提不正确
2、D全不正确【答案】C4(2014安阳模拟)我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值a,类比上述结论,在边长为a的正四面体内任一点到其四个面的距离之和为定值()A.aB.a C.aD.a【答案】A5观察下列各式:7249,73343,742 401,则72 011的末两位数字为()A01B43C07D49【答案】B6已知函数yf(x)的定义域为D,若对于任意的x1,x2D(x1x2),都有f,则称yf(x)为D上的凹函数由此可得下列函数中的凹函数为()Aylog2xByCyx2Dyx3【答案】C二、填空题(每小题5分,共15分)7由代数式的乘法法则类比推导向量的数量积的运算法
3、则:由“mnnm”类比得到“abba”;由“(mn)tmtnt”类比得到“(ab)cacbc”;由“t0,mtxtmx”类比得到“p0,apxpax”;由“|mn|m|n|”类比得到“|ab|a|b|”以上结论正确的是_【答案】8已知经过计算和验证有下列正确的不等式:2,2,2,根据以上不等式的规律,请写出一个对正实数m,n都成立的条件不等式_【答案】若正数m,n满足mn20时,有29(2013安徽高考)如图1123,互不相同的点A1,A2,An,和B1,B2,Bn,分别在角O的两条边上,所有AnBn相互平行,且所有梯形AnBnBn1An1的面积均相等,设OAnan.若a11,a22,则数列a
4、n的通项公式是_图1123【答案】an三、解答题(本大题共3小题,共35分)10(10分)观察下表:1,2,34,5,6,7,8,9,10,11,12,13,14,15,问:(1)此表第n行的最后一个数是多少?(2)此表第n行的各个数之和是多少?(3)2 013是第几行的第几个数?【解】(1)第n1行的第1个数是2n,第n行的最后一个数是2n1.(2)2n1(2n11)(2n12)(2n1)322n32n2.(3)2101 024,2112 048,1 0242 0132 048,2 013在第11行,该行第1个数是2101 024,由2 0131 0241990,知2 013是第11行的第9
5、90个数11(12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:sin213cos217sin 13cos 17;sin215cos215sin 15cos 15;sin218cos212sin 18cos 12;sin2(18)cos248sin(18)cos 48;sin2(25)cos255sin(25)cos 55.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论【解】(1)选择式,计算如下:sin215cos215sin 15cos 151sin 30.(2)归纳三角恒等式sin2cos2
6、(30)sin cos(30).证明如下:sin2cos2(30)sin cos(30)sin (cos 30cos sin 30sin )cos 2(cos 60cos 2sin 60sin 2)sin cos sin2cos 2cos 2sin 2sin 2(1cos 2)1cos 2cos 2.12(13分)在RtABC中,ABAC,ADBC于D,求证:,那么在四面体ABCD中,类比上述结论,你能得到怎样的猜想,并说明理由【证明】如图所示,由射影定理AD2BDDC,AB2BDBC,AC2BCDC,.又BC2AB2AC2,.猜想,四面体ABCD中,AB、AC、AD两两垂直,AE平面BCD,则.证明:如图,连接BE并延长交CD于F,连接AF.ABAC,ABAD,AB平面ACD.ABAF.在RtABF中,AEBF,.在RtACD中,AFCD,.,故猜想正确