收藏 分享(赏)

数学因式分解方法:换元法与待定系数法.doc

上传人:a**** 文档编号:533359 上传时间:2025-12-09 格式:DOC 页数:2 大小:12.50KB
下载 相关 举报
数学因式分解方法:换元法与待定系数法.doc_第1页
第1页 / 共2页
数学因式分解方法:换元法与待定系数法.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、数学因式分解方法:换元法与待定系数法7、换元法换元法就是引入新的字母变量,将原式中的字母变量换掉化简式子。运用此种方法对于某些特殊的多项式因式分解可以起到简化的效果。例7分解因式:(x+1)(x+2)(x+3)(x+4)-120解析若将此展开,将十分繁琐,但我们注意到(x+1)(x+4)=x2+5x+4(x+2)(x+3)=x2+5x+6故可用换元法分解此题解原式=(x2+5x+4)(x2+5x+6)-120令y=x2+5x+5则原式=(y-1)(y+1)-120=y2-121=(y+11)(y-11)=(x2+5x+16)(x2+5x-6)=(x+6)(x-1)(x2+5x+16)注在此也可

2、令x2+5x+4=y或x2+5x+6=y或x2+5x=y请认真比较体会哪种换法更简单?8、待定系数法待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多 项式的恒等性质列出n个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数。待定系数法应用广泛,在此只研究它的因式分解中的一些应用。例7分解因式:2a2+3ab-9b2+14a+3b+20分析属于二次六项式,也可考虑用双十字相乘法,在此我们用待定系数法先分解2a2+3ab+9b2=(2a-3b)(a+3b)解设可设原式=(2a-3b+m)(a+3

3、b+n)=2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn比较两个多项式(即原式与*式)的系数m+2n=14(1)m=43m-3n=-3(2)=mn=20(3)n=5原式=(2x-3b+4)(a+3b+5)这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?注对于(*)式因为

4、对a,b取任何值等式都成立,也可用令特殊值法,求m,n唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。令a=1,b=0,m+2n=14m=4=令a=0,b=1,m=n=-1n=5

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1