1、数学初二基础训练菱形语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思
2、想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。数学初二基础训练菱形语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便
3、可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。孟子中的“先生何为出此言也?”;论语中的“有酒食,先生馔”;国策中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实国策中本身就有“先生长者
4、,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于礼记?曲礼,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。一、填空题: 1.菱形的定义:_的平行四边形叫做菱形. 2.菱形的性质:菱形是特殊的平行四边形,它具有四边形和平行四边形的_:还有:菱形的四条边_;菱形的对角线_,并且每一条对角线平分_;菱形的面积等于_,它的对称轴是_. 3.菱形的判定:一组邻边相等的_是菱形;四条边_的四边形是菱形;对角线_
5、_的平行四边形是菱形. 4.已知菱形的周长为40cm,两个相邻角度数之比为12,则较长对角线的长为_cm. 5.若菱形的两条对角线长分别是6cm,8cm,则它的周长为_cm,面积为_cm2. 二、选择题 6.对角线互相垂直平分的四边形是( ). (A)平行四边形(B)矩形(C)菱形 (D)任意四边形 7.顺次连结对角线相等的四边形各边中点,所得四边形是( ). (A)矩形(B)平行四边形(C)菱形(D)任意四边形 8.下列命题中,正确的是( ). (A)两邻边相等的四边形是菱形 (B)一条对角线平分一个内角的平行四边形是菱形 (C)对角线垂直且一组邻边相等的四边形是菱形 (D)对角线垂直的四边
6、形是菱形 9.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD的周长是( ). (A)4 (B)8 (C)12 (D)16 10.菱形ABCD中,∠A∠B=15,若周长为8,则此菱形的高等于( ). (A)(B)4(C)1(D)2 综合、运用、诊断 一、解答题 11.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=4. 求:(1)∠ABC的度数;(2)菱形ABCD的面积. 12.如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB+PE的最小值是,求AB的值. 1
7、3.如图,在ABCD中,E,F分别为边AB,CD的中点,连结DE,BF,BD. (1)求证:ADECBF. (2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论. 14.如图,四边形ABCD中,ABCD,AC平分∠BAD,CEAD交AB于E. (1)求证:四边形AECD是菱形; (2)若点E是AB的中点,试判断ABC的形状,并说明理由. 15.如图,ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F. (1)证明:当旋转角为90°时,四边形ABEF是平行四边形; (2)
8、试说明在旋转过程中,线段AF与EC总保持相等; (3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,画出图形并写出此时AC绕点O顺时针旋转的度数. 16.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2. (1)求证:BDEBCF; (2)判断BEF的形状,并说明理由; (3)设BEF的面积为S,求S的取值范围. 拓展、探究、思考 17.请用两种不同的方法,在所给的两个矩形中各画一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上(保留作图痕迹). 18.如图,菱形AB1C1D1的边长为1,∠B1=60°作AD2⊥B1C1于点D2,以AD2为一边,作第二个菱形AB2C2D2,使∠B2=60°作AD3⊥B2C2于点D3,以AD3为一边,作第三个菱形AB3C3D3,使∠B3=60°依此类推