收藏 分享(赏)

数学人教A版选修4-1 1-3相似三角形的判定教案3 WORD版含解析.doc

上传人:a**** 文档编号:529271 上传时间:2025-12-09 格式:DOC 页数:2 大小:27.50KB
下载 相关 举报
数学人教A版选修4-1 1-3相似三角形的判定教案3 WORD版含解析.doc_第1页
第1页 / 共2页
数学人教A版选修4-1 1-3相似三角形的判定教案3 WORD版含解析.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、相似三角形的判定一、教学目标1经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力2掌握“两角对应相等,两个三角形相似”的判定方法3能够运用三角形相似的条件解决简单的问题二、重点、难点1重点:三角形相似的判定方法3“两角对应相等,两个三角形相似”2难点:三角形相似的判定方法3的运用3难点的突破方法(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据(3)如果两个三角形是直角三角形, 则只要再找到一对锐角相等即可说明这两个三角形相似三、课

2、堂引入1复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,ABC中,点D在AB上,如果AC2=ADAB,那么ACD与ABC相似吗?说说你的理由(3)如(2)题图,ABC中,点D在AB上,如果ACD=B,那么ACD与ABC相似吗?引出课题 四、例题讲解 例1已知:如图,矩形ABCD中,E为BC上一点,DFAE于F,若AB=4,AD=5,AE=6,求DF的长分析:要求的是线段DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在ABE和AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似解:略(DF=)五、课堂练习1已知:如图,1=2=3,求证:ABCADE2下列说法是否正确,并说明理由(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形1 已知:如图,ABC 的高AD、BE交于点F求证:2已知:如图,BE是ABC的外接圆O的直径,CD是ABC的高(1)求证:ACBC=BECD; (2)若CD=6,AD=3,BD=8,求O的直径BE的长教学反思

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1