1、课后提升作业 二十六直线与圆的位置关系(45分钟70分)一、选择题(每小题5分,共40分)1.如果a2+b2=c2,那么直线ax+by+c=0与圆x2+y2=1的位置关系是()A.相交B.相切C.相离D.相交或相切【解析】选C.圆的半径r=1,圆心(0,0)到直线ax+by+c=0的距离d=1.2.(2016德州高一检测)设直线过点(a,0),其斜率为-1,且与圆x2+y2=2相切,则a的值为()A.B.2C.2D.4【解析】选B.因为切线的方程是y=-(x-a),即x+y-a=0,所以=,a=2.3.直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为()A.1B.2C.4D.4
2、【解题指南】由圆的半径、弦心距、半弦长组成直角三角形,利用勾股定理即可求得半弦长.【解析】选C.由(x-1)2+(y-2)2=5得圆心(1,2),半径r=,圆心到直线x+2y-5+=0的距离d=1,在半径、弦心距、半弦长组成的直角三角形中,弦长l=2=2=4.4.(2016天水高一检测)过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为()A.4B.2C.D.【解析】选A.根据题意,知点P在圆上,所以切线l的斜率k=-=-=.所以直线l的方程为y-4=(x+2).即4x-3y+20=0.又直线m与l平行,所以直线m的方
3、程为4x-3y=0.故直线l与m间的距离为d=4.5.(2016汉中高一检测)过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是()A.y=xB.y=-xC.y=xD.y=-x【解析】选C.设切线方程为y=kx,圆的方程化为(x+2)2+y2=1,而圆心(-2,0)到直线y=kx的距离为1,所以=1.所以k=.又因为切点在第三象限,所以k=.【补偿训练】圆x2+y2-4x=0在点P(1,)处的切线方程是()A.x+y-2=0B.x+y-4=0C.x-y+4=0D.x-y+2=0【解析】选D.圆心为C(2,0),则直线CP的斜率为=-,又切线与直线CP垂直,故切线斜
4、率为,由点斜式得切线方程为:y-=(x-1),即x-y+2=0.6.已知圆C:(x-a)2+(y-2)2=4(a0)及直线l:x-y+3=0,当直线l被圆C截得的弦长为2时,a等于()A.B.2-C.-1D.+1【解析】选C.因为圆的半径为2,且截得弦长的一半为,所以圆心到直线的距离为1,即=1,解得a=-1,因为a0,所以a=-1.7.(2016长沙高一检测)由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为()A.1B.2C.D.3【解析】选C.设圆心为C(3,0),P为直线上一动点,过P向圆引切线,切点设为N,所以(PN)min=()min=,又(PC)min=
5、2,所以(PN)min=.8.过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.030B.060C.030D.060【解题指南】求出直线与圆相切时的直线的斜率,数形结合即可得到直线l的倾斜角的取值范围.【解析】选D.设过点P与圆相切的直线方程为y+1=k(x+),则圆心到该直线的距离d=1,解得k1=0,k2=,画出图形可得直线l的倾斜角的取值范围是060.二、填空题(每小题5分,共10分)9.(2016郑州高一检测)过点A(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=_.【解析】点A(1,)在圆(x-2
6、)2+y2=4内,当劣弧所对的圆心角最小时,l垂直于过点A(1,)和圆心M(2,0)的直线.所以k=-=-=.答案:10.(2016全国卷)已知直线l:mx+y+3m-=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.【解析】取AB的中点E,连接OE,过点C作BD的垂线,垂足为F,圆心到直线的距离d=,所以在RtOBE中,BE2=OB2-d2=3,所以d=3,得m=-,又在CDF中,FCD=30,所以CD=4.答案:4三、解答题(每小题10分,共20分)11.(2016广州高一检测)已知圆的方程为(x-1)2+(y-1)2=1,P
7、点坐标为(2,3),求圆的过P点的切线方程以及切线长.【解析】如图,此圆的圆心C为(1,1),CA=CB=1,则切线长|PA|=2.(1)若切线的斜率存在,可设切线的方程为y-3=k(x-2),即kx-y-2k+3=0,则圆心到切线的距离d=1,解得k=,故切线的方程为3x-4y+6=0.(2)若切线的斜率不存在,切线方程为x=2,此时直线也与圆相切.综上所述,过P点的切线的方程为3x-4y+6=0和x=2.12.(2016杭州高一检测)已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ的中点,l与直线m:x+3y+6=0相交于N.(1)求证:当l与m垂直
8、时,l必过圆心C.(2)当|PQ|=2时,求直线l的方程.【解析】(1)因为l与m垂直,且km=-,所以kl=3,故直线l的方程为y=3(x+1),即3x-y+3=0.因为圆心坐标为(0,3)满足直线l的方程,所以当l与m垂直时,l必过圆心C.(2)当直线l与x轴垂直时,易知x=-1符合题意.当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),即kx-y+k=0,因为|PQ|=2,所以|CM|=1,则由|CM|=1,得k=,所以直线l:4x-3y+4=0.故直线l的方程为x=-1或4x-3y+4=0.【能力挑战题】(2015广东高考)已知过原点的动直线l与圆C1:x2+y2-6x+5=0
9、相交于不同的两点A,B.(1)求圆C1的圆心坐标.(2)求线段AB的中点M的轨迹C的方程.(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【解析】(1)由x2+y2-6x+5=0得(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)设M(x,y),则因为点M为弦AB的中点,所以C1MAB,所以kAB=-1即=-1,所以线段AB的中点M的轨迹的方程为+y2=.(3)由(2)知点M的轨迹是以C为圆心,r=为半径的部分圆弧EF(如图所示,不包括两端点)且E,F,又直线L:y=k(x-4)过定点D(4,0),当直线L与圆C相切时,由=得k=,又kDE=-kDF=-=-,kDF=,结合图形可知当k时,直线L:y=k(x-4)与曲线C只有一个交点.6