收藏 分享(赏)

2022年高中数学 第四章 圆与方程 单元质量评估(四)(含解析)新人教版必修2.doc

上传人:高**** 文档编号:529047 上传时间:2024-05-28 格式:DOC 页数:7 大小:150KB
下载 相关 举报
2022年高中数学 第四章 圆与方程 单元质量评估(四)(含解析)新人教版必修2.doc_第1页
第1页 / 共7页
2022年高中数学 第四章 圆与方程 单元质量评估(四)(含解析)新人教版必修2.doc_第2页
第2页 / 共7页
2022年高中数学 第四章 圆与方程 单元质量评估(四)(含解析)新人教版必修2.doc_第3页
第3页 / 共7页
2022年高中数学 第四章 圆与方程 单元质量评估(四)(含解析)新人教版必修2.doc_第4页
第4页 / 共7页
2022年高中数学 第四章 圆与方程 单元质量评估(四)(含解析)新人教版必修2.doc_第5页
第5页 / 共7页
2022年高中数学 第四章 圆与方程 单元质量评估(四)(含解析)新人教版必修2.doc_第6页
第6页 / 共7页
2022年高中数学 第四章 圆与方程 单元质量评估(四)(含解析)新人教版必修2.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、单元质量评估(四)(第四章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(2016平顶山高一检测)圆(x+2)2+y2=5关于y轴对称的圆的方程为()A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5【解析】选A.由题意知所求圆的圆心为(2,0),半径为,故所求圆的方程为(x-2)2+y2=5.2.直线l:y=k与圆C:x2+y2=1的位置关系是()A.相交或相切B.相交或相离C.相切D.相交【解析】选D.圆C的圆心(0,0)到直线y=k的距离d=,因

2、为d2=1,所以位置关系为相交.【一题多解】选D.直线l:y=k过定点,而点在圆C:x2+y2=1内部,故直线l与圆C相交.3.(2015广东高考)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x-y+=0或2x-y-=0B.2x+y+=0或2x+y-=0C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=0【解析】选D.设所求切线方程为2x+y+c=0,依题有=,解得c=5,所以所求的直线方程为2x+y+5=0或2x+y-5=0.4.若直线ax+by=4与圆x2+y2=4有两个不同的交点,则点P(a,b)与圆的位置关系是()A.点P在圆外B.

3、点P在圆上C.点P在圆内D.不能确定【解析】选A.根据直线与圆相交得圆心到直线的距离小于半径,4,所以点P(a,b)在圆x2+y2=4的外部.【延伸探究】若本题条件换为“直线ax+by=4与圆x2+y2=4相切”则结论又如何呢?【解析】选B.由题意知=2,即a2+b2=4.则点P在圆上.5.(2016成都高一检测)圆O1:x2+y2-2x=0与圆O2:x2+y2-4y=0的位置关系是()A.外离B.相交C.外切D.内切【解析】选B.圆O1(1,0),r1=1,圆O2(0,2),r2=2,|O1O2|=2-1,故两圆相交.6.(2016全国卷)圆x2+y2-2x-8y+13=0的圆心到直线ax+

4、y-1=0的距离为1,则a=()A.-B.-C.D.2【解析】选A.圆x2+y2-2x-8y+13=0化为标准方程为:(x-1)2+(y-4)2=4,故圆心为(1,4),d=1,解得a=-.7.以点(3,-1)为圆心且与直线3x+4y=0相切的圆的方程是()A.(x+3)2+(y-1)2=1B.(x+3)2+(y-1)2=2C.(x-3)2+(y+1)2=1D.(x-3)2+(y+1)2=2【解析】选C.由已知,r=d=1,故选C.8.空间直角坐标系中,点A(-3,4,0)和B(x,-1,6)的距离为,则x的值为()A.2B.-8C.2或-8D.8或-2【解析】选C.由空间两点间距离公式得=,

5、解得x=2或-8.9.(2016南昌高一检测)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=()A.B.2C.1D.3【解析】选B.依题意,圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的,即=,=1cos45=,所以a2=b2=1,故a2+b2=2.10.(2014江西高考)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A.B.C.(6-2)D.【解题指南】数形结合,找到圆的半径最小时的情况即可.【解析】选A.由题意得,当原点到已知直线的距离恰为圆的

6、直径时,圆的面积最小,此时圆的半径为=,圆的面积为S=.11.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A.(-2,2)B.(-,)C. -,D. -,【解析】选C.易知圆心坐标是(1,0),圆的半径是1,直线l的方程是y=k(x+2),即kx-y+2k=0,根据点到直线的距离公式得1,即k2,解得-k0,若AB中有且仅有一个元素,则r的值是_.【解题指南】根据AB中有且仅有一个元素,说明两圆相切,注意分外切和内切,分别求r的值.【解析】因为AB中有且仅有一个元素,所以两圆相切.当两圆外切时,2+r=5,即r=3;当两圆内切时,r-2=5,即

7、r=7.所以r的值是3或7.答案:3或716.方程x2+y2+2ax-2ay=0表示的圆,关于直线y=x对称;关于直线x+y=0对称;其圆心在x轴上,且过原点;其圆心在y轴上,且过原点,其中叙述正确的是_.【解析】将已知方程配方,得(x+a)2+(y-a)2=2a2(a0),圆心坐标为(-a,a),它在直线x+y=0上,所以已知圆关于直线x+y=0对称.故正确.答案:三、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)(2016北京高一检测)求经过两点A(-1,4),B(3,2)且圆心C在y轴上的圆的方程.【解析】因为AB的中点是(1,3),k

8、AB=-,所以AB的垂直平分线方程为y-3=2(x-1),即2x-y+1=0.令x=0,得y=1,即圆心C(0,1).所以所求圆的半径为|AC|=.所以所求圆的方程为x2+(y-1)2=10.18.(12分)在三棱柱ABO-ABO中,AOB=90,侧棱OO平面OAB,OA=OB=OO=2.若C为线段OA的中点,在线段BB上求一点E,使|EC|最小.【解析】如图所示,以三棱柱的O点为坐标原点,以OA,OB,OO所在的直线分别为x轴、y轴、z轴建立空间直角坐标系Oxyz.由OA=OB=OO=2,得A(2,0,0),B(0,2,0),O(0,0,0),A(2,0,2),B(0,2,2),O(0,0,

9、2).由C为线段OA的中点得C点坐标为(1,0,1),设E点坐标为(0,2,z),根据空间两点间距离公式得|EC|=,故当z=1时,|EC|取得最小值为,此时E(0,2,1)为线段BB的中点.19.(12分)(2016大连高一检测)已知圆C:(x-1) 2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程.(2)当弦AB被点P平分时,写出直线l的方程.【解析】(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线l过点P,C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB被点P平分时,l

10、PC,直线l的方程为y-2=-(x-2),即x+2y-6=0.20.(12分)已知圆O:x2+y2=1与直线l:y=kx+2.(1)当k=2时,求直线l被圆O截得的弦长.(2)当直线l与圆O相切时,求k的值.【解析】(1)当k=2时,直线l的方程为2x-y+2=0.设直线l与圆O的两个交点分别为A,B,过圆心O(0,0)作ODAB于点D,则|OD|=,所以|AB|=2|AD|=2=.(2)当直线l与圆O相切时,即圆心到直线的距离等于圆的半径.所以=1,即=2,解得k=.【一题多解】(1)当k=2时,联立方程组消去y,得5x2+8x+3=0,解得x=-1或x=-,代入y=2x+2,得y=0或y=

11、,设直线l与圆O的两个交点分别为A,B,则A(-1,0)和B,所以|AB|=.(2)联立方程组消去y,得(1+k2)x2+4kx+3=0,当直线l与圆O相切时,即上面关于x的方程只有一个实数根.则=(4k)2-43(1+k2)=0,即4k2-12=0,k2=3,所以k=.21.(12分)(2016长春高一检测)已知圆C:x2+y2-2x+4y-4=0.(1)写出圆C的标准方程,并指出圆心坐标和半径大小.(2)是否存在斜率为1的直线m,使m被圆C截得的弦为AB,且OAOB(O为坐标原点).若存在,求出直线m的方程;若不存在,说明理由.【解题指南】(1)由圆的一般方程x2+y2+Dx+Ey+F=0

12、(D2+E2-4F0)得其圆心-,-,半径为,从而可得圆C的标准方程,此题也可以通过配方法直接得到圆C的标准方程,然后再写出其圆心坐标和半径.(2)首先根据题意设出m的方程,然后与圆的方程联立消y得关于x的一元二次方程,运用根与系数的关系得到两根的和及积的关系,然后再根据OAOB不难得出关于两根和及积的方程,从而可求直线m的方程.【解析】(1)根据圆的一般方程结合已知得:D=-2,E=4,F=-4,则-=-=1,-=-=-2,=3,即圆心C的坐标为(1,-2),半径为3,所以圆C的标准方程为:(x-1)2+(y+2)2=9.(2)根据题意可设直线m:y=x+b,代入圆的方程得:2x2+2(b+

13、1)x+b2+4b-4=0,因为直线与圆相交,所以b2+6b-90,x1+x2=-b-1,x1x2=,设A(x1,y1),B(x2,y2),则y1=x1+b,y2=x2+b,由OAOB得:=-1=-1(x1+b)(x2+b)+x1x2=0,2x1x2+b(x1+x2)+b2=0b2+3b-4=0,得b=-4或b=1,均满足b2+6b-90)与圆相交于A,B两点,求实数a的取值范围.(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4)?若存在,求出实数a的值;若不存在,请说明理由.【解析】(1)设圆心为M(m,0)(mZ).由于圆与直线4x+3y-29=0相切,且半

14、径为5,所以=5,即|4m-29|=25.因为m为整数,故m=1.故所求圆的方程为(x-1)2+y2=25.(2)把直线ax-y+5=0即y=ax+5代入圆的方程,消去y整理,得(a2+1)x2+2(5a-1)x+1=0.由于直线ax-y+5=0交圆于A,B两点,故=4(5a-1)2-4(a2+1)0.即12a2-5a0,由于a0,解得a,所以实数a的取值范围是.(3)假设符合条件的实数a存在,由于a0,则直线l的斜率为-,l的方程为y=-(x+2)+4,即x+ay+2-4a=0.由于l垂直平分弦AB,故圆心M(1,0)必在l上.所以1+0+2-4a=0,解得a=.由于,故存在实数a=,使得过点P(-2,4)的直线l垂直平分弦AB.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3