1、沪科版 八年级下第 十 九 章四 边 形练素养判定平行四边形的五种常用方法课题集 训 课 堂12345温馨提示:点击进入讲评习题链接如图,在ABCD中,E,F分别为AD,BC上的点,且BFDE,连接AF,CE,BE,DF,AF与BE相交于M点,DF与CE相交于N点求证:四边形FMEN为平行四边形1证明:四边形ABCD是平行四边形,DEBF,DEBF.四边形BFDE为平行四边形BEDF.同理,AFCE.四边形FMEN为平行四边形【2021春鼓楼区校级期中】如图,在ABC中,点D,E,F分别是BC,AC,AB边上的中点求证:四边形BDEF是平行四边形234如图,在四边形ABCD中,AC,ABAD,
2、BCCD求证:四边形ABCD是平行四边形证明:ABAD,BCCD,ABDADB,CDBCBD.AC,ABDADBCDBCBD,ADCABC.又AC,四边形ABCD是平行四边形【中考哈尔滨】如图,ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH(1)求证:四边形EGFH是平行四边形;5(2)如图,若EFAB,GHBC,在不添加任何辅助线的情况下,请直接写出图中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外)解:与四边形AGHD面积相等的平行四边形有GBCH,ABFE,EFCD,EGFH.