1、解三角形复习小结 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题 学习过程 一、课前准备复习1: 正弦定理和余弦定理(1)用正弦定理:知两角及一边解三角形; 知两边及其中一边所对的角解三角形(要讨论解的个数)(2)用余弦定理:知三边求三角; 知道两边及这两边的夹角解三角形复习2:应用举例 距离问题,高度问题, 角度问题,计算问题练:有一长为2公里的斜坡,它的倾斜角为30,现要将倾斜角改为45,且高度不变. 则斜坡长变为_ 二、新课导学 典型例题例1. 在中,且最长边为1,求角C的大小及ABC最短边的长北2010ABC例2. 如图,当甲船位于A处时获悉,在其正东方
2、向相距20海里的B处有一艘渔船遇险等待营救甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?例3. 在ABC中,设 求A的值 动手试试北练1. 如图,某海轮以60 n mile/h 的速度航行,在A点测得海面上油井P在南偏东60,向北航行40 min后到达B点,测得油井P在南偏东30,海轮改为北偏东60的航向再行驶80 min到达C点,求P、C间的距离练2. 在ABC中,b10,A30,问a取何值时,此三角形有一个解?两个解?无解?三、总结提升 学习小结1. 应用正、余弦定理解三角形;2. 利用正、余弦
3、定理解决实际问题(测量距离、高度、角度等);3在现实生活中灵活运用正、余弦定理解决问题. (边角转化) 知识拓展设在中,已知三边,那么用已知边表示外接圆半径R的公式是: 学习评价 自我评价 你完成本节导学案的情况为( ) A. 很好 B. 较好C. 一般D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知ABC中,AB6,A30,B,则ABC的面积为( ).A9 B18 C9D182.在ABC中,若,则C=( ). A 60 B 90 C150 D1203. 在ABC中,A=30,则B的解的个数是( ).A0个 B1个 C2个 D不确定的4. 在ABC中,则_5. 在ABC中,、b、c分别为A、B、C的对边,若,则A=_ _. 课后作业 1. 已知、为的三内角,且其对边分别为、,若(1)求;(2)若,求的面积2. 在ABC中,分别为角A、B、C的对边,=3, ABC的面积为6, (1)求角A的正弦值; (2)求边b、c.