1、专题01 空间几何体的结构(测试时间:120分钟 满分:150分)第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1下列图形中,不是三棱柱的展开图的是()答案:C2有两个面平行的多面体不可能是()A棱柱 B棱锥C棱台 D以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行3关于棱柱,下列说法正确的是()A只有两个面平行B所有的棱都相等C所有的面都是平行四边形D两底面平行,侧棱也互相平行4 正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A2
2、0 B15C12 D10解析:选D从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5210条对角线5下列命题中正确的是()A用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B两个底面平行且相似,其余各面都是梯形的多面体是棱台C棱台的底面是两个相似的正方形D棱台的侧棱延长后必交于一点解析:选DA中的平面不一定平行于底面,故A错;B中侧棱不一定交于一点;C中底面不一定是正方形6.观察如图的四个几何体,其中判断不正确的是()A.是棱柱B.不是棱锥C.不是棱锥D.是棱台解析:结合棱柱、棱锥、棱台的定义可知是棱柱,是棱锥,是棱台,不是棱锥,故B错误.答案:B7
3、.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一条棱将正方体剪开,外面朝上展平得到右侧的平面图形,则标“”的面的方位是()A.南B.北C.西D.下答案:B8.如图,在三棱台ABC-ABC中,截去三棱锥A-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台解析:剩余部分是四棱锥A-BCCB.答案:B9.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形解析:三棱锥的侧面和底面均是三角形.答案:A10.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()解析:动手将四个选项中的平
4、面图形折叠,看哪一个可以折叠围成正方体即可.答案:C11.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定形状.答案:A12.用一个平面去截四棱锥,不可能得到()A.棱锥B.棱柱C.棱台D.四面体解析:根据棱椎的特点,侧棱不平行,所以肯定得不到棱柱答案:B第卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13面数最少的棱柱为_棱柱,共有_个面围成解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成答案:三514.如图,M是棱长为
5、2 cm的正方体ABCDA1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是_ cm.答案:15侧棱垂直于底面的棱柱叫做直棱柱侧棱不垂直于底面的棱柱叫做斜棱柱底面是正多边形的直棱柱叫做正棱柱底面是平行四边形的四棱柱叫做平行六面体侧棱与底面垂直的平行六面体叫做直平行六面体底面是矩形的直平行六面体叫做长方体棱长都相等的长方体叫做正方体请根据上述定义,回答下面的问题:(1)直四棱柱_是长方体;(2)正四棱柱_是正方体(填“一定”、“不一定”、 “一定不”)解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体答案:(
6、1)不一定(2)不一定16.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为cm.解析:n棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60 cm,可知每条侧棱长为12 cm.答案:12三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征 18 给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明解:如
7、图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底19.按下列条件分割三棱台ABC-A1B1C1(不需要画图,各写出一种分割方法即可).(1)一个三棱柱和一个多面体;(2)三个三棱锥. 20.正三棱台的上、下底面边长及高分别为1,2,2,则它的斜高是多少?解析:如图,MF=OF-OE=.在RtEMF中,EM=2,EF=. 所以斜高是21.如图,在棱锥A-BCD中,截面EFG平行于底面,且AEAB=13,已知DBC的周长是18,求EFG的周长.解:由已知得EFBD,FGCD,EGBC,EFGBDC.又,.EFG的周长=18=6.22.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.