收藏 分享(赏)

2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx

上传人:a**** 文档编号:504144 上传时间:2025-12-09 格式:PPTX 页数:47 大小:2.31MB
下载 相关 举报
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第1页
第1页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第2页
第2页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第3页
第3页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第4页
第4页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第5页
第5页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第6页
第6页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第7页
第7页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第8页
第8页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第9页
第9页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第10页
第10页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第11页
第11页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第12页
第12页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第13页
第13页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第14页
第14页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第15页
第15页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第16页
第16页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第17页
第17页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第18页
第18页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第19页
第19页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第20页
第20页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第21页
第21页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第22页
第22页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第23页
第23页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第24页
第24页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第25页
第25页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第26页
第26页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第27页
第27页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第28页
第28页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第29页
第29页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第30页
第30页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第31页
第31页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第32页
第32页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第33页
第33页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第34页
第34页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第35页
第35页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第36页
第36页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第37页
第37页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第38页
第38页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第39页
第39页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第40页
第40页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第41页
第41页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第42页
第42页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第43页
第43页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第44页
第44页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第45页
第45页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第46页
第46页 / 共47页
2022届高三人教A版数学一轮复习课件:第7章 7-5 空间向量及其运算 .pptx_第47页
第47页 / 共47页
亲,该文档总共47页,全部预览完了,如果喜欢就下载吧!
资源描述

1、7.5空间向量及其运算第七章2022课标要求1.在平面直角坐标系的基础上,了解空间直角坐标系,感受建立空间直角坐标系的必要性,会用空间直角坐标系刻画点的位置.2.借助特殊长方体(所有棱分别与坐标轴平行)顶点的坐标.探索并得出空间两点间的距离公式.3.了解空间向量的概念.4.经历由平面向量的运算及其法则推广到空间向量的过程.5.了解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示.6.掌握空间向量的线性运算及其坐标表示.7.掌握空间向量的数量积及其坐标表示.8.了解空间向量投影的概念以及投影向量的意义.备考指导本节内容是在平面向量基础上的推广与扩充,复习时要类比平面向量的相关概念、定

2、理、公式、运算律等,比较它们之间的异同.本节知识对数学抽象核心素养体现较多,是基础性和工具性的内容,难度不大.重点是理解和记忆定理、公式等,能准确进行空间向量的运算以及应用空间向量解决平行、垂直和夹角等问题.内容索引010203第一环节 必备知识落实第二环节 关键能力形成第三环节 学科素养提升第一环节 必备知识落实【知识筛查】1.空间向量的相关概念(1)定义在空间,我们把具有大小和方向的量叫做空间向量.空间向量的大小叫做空间向量的长度或模.(2)特殊的空间向量2.空间向量的线性运算(1)加法与减法运算(2)数乘运算定义:实数与空间向量a的积a仍然是一个向量,称为向量的数乘运算.当0时,a与向量

3、a方向相同;当0时,a与向量a方向相反;当=0时,a=0;a的长度是a的长度的|倍,即|a|=|a|.(3)运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c;分配律:(a+b)=a+b;(a)=()a.3.空间向量的基本定理(1)共线向量定理定理:对任意两个空间向量a,b(b0),ab的充要条件是存在实数,使a=b.温馨提示1.定理中规定b0,这是因为:(1)在充分性中,当b=0,0时,也有a=b=0,而零向量与任一向量共线,并不唯一;(2)在必要性中,当a0,b=0时,不存在实数,使a=b.(2)共面向量定理定义:平行于同一个平面的向量,叫做共面向量.共面向量定理:如果两

4、个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在唯一的有序实数组(x,y,z),使p=xa+yb+zc.a,b,c叫做空间的一个基底,其中a,b,c都叫做基向量.4.空间向量的数量积运算(1)空间两向量的夹角夹角的范围:空间任意两个向量的夹角的取值范围是0,.特别地,当=0时,两向量同向共线;当=时,两向量反向共线,所以若ab,则=0或.(2)空间两向量的数量积运算定义:已知两个非零向量a,b,则|a|b|cos叫做a,b的数量积,记作ab.即ab=|a|b

5、|cos.特别地,零向量与任意向量的数量积为 0.运算律结合律:(a)b=(ab);交换律:ab=ba;分配律:a(b+c)=ab+ac.(3)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).【知识巩固】1.下列说法正确的画“”,错误的画“”.(1)“|a|-|b|=|a+b|”是“a,b共线”的充要条件.()(2)对空间任意一点O与不共线的三点A,B,C,若(其中x,y,zR),则P,A,B,C四点共面.()(3)对于空间非零向量a,b,abab=0.()(4)对于非零向量b,由ab=bc,得a=c.()(5)非零向量a,b,c满足(ab)c=a(bc).()

6、2.已知x,yR,有下列说法:若p=xa+yb,则p与a,b共面;若p与a,b共面,则p=xa+yb;其中正确说法的个数是()A.1B.2C.3D.4B正确.中若a,b共线,p与a不共线,则p=xa+yb不成立.正确.中若点M,A,B共线,点P不在此直线上,则不成立.3.如图,在一个60的二面角的棱上,有两个点A,B,AC,BD分别是在这个二面角的两个半平面内垂直于AB的线段,且AB=4,AC=6,BD=8,则CD的长为.4.如图,在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别是A1B1和BB1的中点,则直线AM和CN所成角的余弦值为.5.如图,已知空间四边形ABCD的每条边和对角

7、线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:(3)EG的长;(4)异面直线AG与CE所成角的余弦值.第二环节 关键能力形成能力形成点1能力形成点2能力形成点3能力形成点1空间向量的线性运算例1如图,在平行六面体ABCD-A1B1C1D1中,设 ,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:能力形成点1能力形成点2能力形成点3能力形成点1能力形成点2能力形成点3解题心得1.选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,这是用向量解决立体几何问题的基本方法.解题时应结合已知和所求观察图形,灵活运用相关的运算法则和公式来表示所需向量.2

8、.空间向量问题可以转化为平面向量问题来解决,即把空间向量转化到某一个平面上,利用三角形法则或平行四边形法则来解决.能力形成点1能力形成点2能力形成点3对点训练1如图,在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是ABC的重心,用基向量能力形成点1能力形成点2能力形成点3能力形成点2共线定理、共面定理的应用例2已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,用向量方法证明:(1)E,F,G,H四点共面;(2)BD平面EFGH.能力形成点1能力形成点2能力形成点3能力形成点1能力形成点2能力形成点3能力形成点1能力形成点2能力形成点3对点训练2 能力形成点1能

9、力形成点2能力形成点3能力形成点1能力形成点2能力形成点3能力形成点3空间向量的数量积及其应用例3在棱长为1的正方体ABCD-A1B1C1D1中,点E,F,G分别是DD1,BD,BB1的中点.(1)求CE的长;(2)求证:EFCF;能力形成点1能力形成点2能力形成点3能力形成点1能力形成点2能力形成点3能力形成点1能力形成点2能力形成点3(方法二:坐标法)能力形成点1能力形成点2能力形成点3能力形成点1能力形成点2能力形成点3解题心得1.证明垂直问题利用abab=0(a0,b0),可将向量的垂直问题转化为向量数量积的计算问题,主要有两种方法:(1)先把两个向量用同一组基底表示出来,再计算它们的

10、数量积.选择基向量时要尽量选择已知长度和夹角的向量作为基向量.(2)建立适当的空间直角坐标系,利用向量数量积的坐标运算直接计算验证.2.求夹角(1)结合图形,平移向量,利用空间向量的夹角的定义来求,但要注意向量夹角的取值范围.(2)先求出两个向量的数量积ab,再利用公式求cos,最后确定.能力形成点1能力形成点2能力形成点3能力形成点1能力形成点2能力形成点3对点训练3(1)如图,已知线段AB平面,BC,CDBC,DF平面,且DCF=30,点D与点A在的同侧,若AB=BC=CD=2,则A,D两点间的距离为.能力形成点1能力形成点2能力形成点3(2)如图,在直三棱柱ABC-ABC中,AC=BC=

11、AA,ACB=90,D,E分别为棱AB,BB的中点.求证:CEAD;求异面直线CE与AC所成角的余弦值.能力形成点1能力形成点2能力形成点3能力形成点1能力形成点2能力形成点3(方法二:坐标法)CC平面ABC,且CACB,以点C为原点,分别以CA,CB,CC所在直线为x轴、y轴、z轴建立空间直角坐标系(图略).令AC=BC=AA=2,则点A(2,0,0),C(0,0,2),A(2,0,2),E(0,2,1),D(1,1,0).第三环节 学科素养提升方程思想与分类讨论思想在空间向量中的应用典例已知向量a=(1,2,3),b=(x,x2+y-2,y),并且a,b同向,则x+y的值为.答案:4解题心得已知向量平行或垂直求参数,一般要根据向量平行或垂直的坐标表示建立参数的方程或方程组,进而求出参数值或取值范围.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1