1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心素养测评 五十九抛物线(30分钟60分)一、选择题(每小题5分,共25分)1.(2020丹东模拟)经过抛物线y2=12x的焦点F,作圆(x-1)2+(y-2)2=8的切线l,则l的方程为()A.x+y-3=0B.x+y-3=0或x=3C.x-y-3=0D.x-y-3=0或x=3【解析】选C.抛物线y2=12x的焦点F(3,0),圆的圆心为(1,2),圆的半径为2,设切线l的方程为x=my+3,则(1,2)到切线l的距离d=2,解得m=1.所以切线l的方程为x-y-3=
2、0.2.已知抛物线y2=4x的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,PAl,垂足为A,|PF|=3,则直线AF的斜率为()A.B.-C.D.-【解析】选B.如图,抛物线y2=4x的焦点为F(1,0),由|PF|=3,得|PA|=3,则xP=2,代入y2=4x,得yP=2.所以A(-1,2),所以kAF=-.3.(2020聊城模拟)已知抛物线C:y2=4x的焦点F和准线l,过点F的直线交l于点A,与抛物线的一个交点为B,且=3,则|AB|=()A.B.C.D.【解析】选C.由抛物线方程y2=4x,知焦点F(1,0),准线l:x=-1,如图,设l与x轴交点为K,过B作BMl,交l于
3、M,则易知BMKF,所以ABMAFK,设|BF|=m,由=3,可知|AB|=2m,所以|KF|=|AF|=m,又由方程知|KF|=2,所以m=2,即m=,所以|AB|=2m=.4.(2020上饶模拟)已知点F是抛物线x2=4y的焦点,点P为抛物线上的任意一点,M(1,2)为平面上一点,则|PM|+|PF|的最小值为()A.3B.2C.4D.2【解析】选A.抛物线标准方程为x2=4y,即p=2,故焦点F(0,1),准线方程y=-1,过P作PA垂直于准线,垂足为A,过M作MA0垂直于准线,垂足为A0,交抛物线于P0,则|PM|+|PF|=|PA|+|PM|A0M|=3(当且仅当P与P0重合时取等号
4、).5.从抛物线y2=4x在第一象限内的一点P引抛物线准线的垂线,垂足为M,若|PM|=4,设抛物线的焦点为F,则直线PF的斜率为()A.B.C.D.2【解析】选C.设P(x0,y0),依题意可知抛物线准线x=-1,所以x0=4-1=3,所以y0=2,所以P(3,2),F(1,0).所以直线PF的斜率为k=.二、填空题(每小题5分,共15分)6.已知点P(-3,3),过点M(3,0)作直线,与抛物线y2=4x相交于A,B两点,设直线PA,PB的斜率分别为k1,k2,则k1+k2=_.【解析】设过点M的直线为x=my+3,联立抛物线方程可得y2-4my-12=0,设A,B,可得y1+y2=4m,
5、y1y2=-12,则k1+k2=+=+=+=+=-1.答案:-17.已知抛物线x2=4y焦点为F,经过F的直线交抛物线于A(x1,y1),B(x2,y2)两点,点A,B在抛物线准线上的射影分别为A1,B1,以下四个结论:x1x2=-4,|AB|=y1+y2+1,A1FB1=,AB的中点到抛物线的准线的距离的最小值为2.其中正确的是_.【解析】抛物线x2=4y焦点为F(0,1),易知直线AB的斜率存在,设直线AB的方程为y=kx+1.由得x2-4kx-4=0,则x1+x2=4k,x1x2=-4,正确;|AB|=|AF|+|BF|=y1+1+y2+1 =y1+y2+2,不正确;=(x1,-2),=
6、(x2,-2), 所以=x1x2+4=0,所以 ,A1FB1=,正确;AB的中点到抛物线的准线的距离d=(|AA1|+|BB1|)=(y1+y2+2) =(kx1+1+kx2+1+2) =(4k2+4)2 .当k=0时取得最小值2,正确.答案:8.(2020保定模拟)已知抛物线y2=2px(p0)经过点M(1,2),直线l与抛物线交于相异两点A,B,若MAB的内切圆圆心为(1,t),则直线l的斜率为_.【解析】将点M(1,2)代入y2=2px,可得p=2,所以抛物线方程为y2=4x,由题意知,直线l斜率存在且不为0,设直线l的方程为x=my+n(m0),代入y2=4x,得y2-4my-4n=0
7、,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4n,又由MAB的内切圆圆心为(1,t),可得kMA+kMB=+=+=0,整理得y1+y2+4=4m+4=0,解得m=-1,从而l的方程为y=-x+n,所以直线l的斜率为-1.答案:-1三、解答题(每小题10分,共20分)9.(2020淄博模拟)已知圆O:x2+y2=4,抛物线C:x2=2py(p0).(1)若抛物线C的焦点F在圆O上,且A为抛物线C和圆O的一个交点,求|AF|.(2)若直线l与抛物线C和圆O分别相切于M,N两点,设M(x0,y0),当y03,4时,求|MN|的最小值.【解析】(1)依题意F在圆x2+y2=
8、4上,所以0+=4,解得p=4,所以抛物线C的方程为:x2=8y,联立 消去x得y2+8y-4=0,解得y=-4+2(负值舍去),所以|AF|=y-=-4+2+2=2-2.(2)依题意设切线l的方程为y-y0=(x-x0),得py-py0=x0x-,又因为=2py0,所以x0x-py-py0=0,由|ON|=2,得|py0|=2=2,所以p=且4,所以|MN|2=|OM|2-4=+-4=2py0+-4=+-4=-4+16,设t=-45,12,则|MN|2=t+16,所以t=8,即y0=2时,|MN|取得最小值为4.10.(2019全国卷)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条
9、切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.【解析】(1)设D,A(x1,y1),则=2y1.由于y=x,所以切线DA的斜率为x1,故=x1.整理得2tx1-2y1+1=0.设B(x2,y2),同理可得2tx2-2y2+1=0.故直线AB的方程为2tx-2y+1=0.所以直线AB过定点.(2)由(1)得直线AB的方程为y=tx+.由可得x2-2tx-1=0.于是x1+x2=2t,x1x2=-1,y1+y2=t(x1+x2)+1=2t2+1,|AB|=|x1-x2|=2(t2+1).设d1,d2分别为点
10、D,E到直线AB的距离,则d1=,d2=.因此,四边形ADBE的面积S=|AB|(d1+d2)=(t2+3).设M为线段AB的中点,则M.由于,而=(t,t2-2),与向量(1,t)平行,所以t+(t2-2)t=0.解得t=0或t=1.当t=0时,S=3;当t=1时,S=4.因此,四边形ADBE的面积为3或4.(15分钟35分)1.(5分)设抛物线y2=8x上一点P到y轴的距离是2,则点P到该抛物线焦点的距离是()A.1B.2C.3D.4【解析】选D.抛物线的标准方程为y2=8x,则抛物线的准线方程为x=-2.又因为点P到y轴的距离是2,则点P到准线的距离为4,根据抛物线的定义可得:点P到该抛
11、物线焦点的距离是4.2.(5分)抛物线y=x2上一点M到x轴的距离为d1,到直线-=1的距离为d2,则d1+d2的最小值为()A.B.C.3D.2【解析】选D.因为点M到抛物线x2=4y的准线的距离为d1+1等于M到抛物线x2=4y的焦点的距离|MF|,则d1+d2+1的最小值即为焦点F到直线-=1的距离.由题意知F(0,1),所以(d1+d2)min=-1=2.3.(5分)(2019葫芦岛模拟)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A,B两点,直线l2与抛物线C交于M,N点,若l1与直线l2的斜率的乘积为-1,则|AB|+|MN|的最小值为
12、()A.14B.16C.18D.20【解析】选B.可得F(1,0),又可知l1,l2的斜率都存在.设直线l1的方程为y=k(x-1),将其代入y2=4x可得:k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),所以|AB|=x1+x2+p=+2=4+,因为l1与l2的斜率的乘积为-1,所以l2的斜率为-,同理可得|MN|=x3+x4+p=+2=4+4k2,所以|AB|+|MN|=4+4+4k2=8+4k28+2=16.当且仅当k=1时取等号.4.(10分)已知点M为直线l1:x=-1上的动点,N,过M作直线l1的垂线l,l交MN的中垂
13、线于点P,记点P的轨迹为C.(1)求曲线C的方程.(2)若直线l2:y=kx+m与圆E:+y2=6相切于点D,与曲线C交于A,B两点,且D为线段AB的中点,求直线l2的方程.【解析】(1)由已知可得,=,即点P到定点N的距离等于它到直线l1的距离,故点P的轨迹是以N为焦点,l1为准线的抛物线,所以曲线C的方程为y2=4x.(2)设A,B,D,由得k2x2+x+m2=0,所以x1+x2=,所以x0=,y0=kx0+m=,即D,因为直线l2与圆E:+y2=6相切于点D,又圆心E(3,0),所以=6,且DEl2,从而+=6,kDE=-1,即:,整理可得=2,即k=,所以m=0,故直线l2的方程为y=
14、x或y=-x.5.(10分)(2019保定模拟)已知抛物线E:y2=8x,直线l:y=kx-4.(1)若直线l与抛物线E相切,求直线l的方程.(2)设Q(4,0),k0,直线l与抛物线E交于不同的两点A(x1,y1),B(x2,y2),若存在点C,使得四边形OACB为平行四边形(O为原点),且ACQC,求x2的取值范围.【解析】(1)根据题意,抛物线E:y2=8x,直线l:y=kx-4,联立可得 整理可得k2x2-8(k+1)x+16=0,若直线l与抛物线E相切,则k0且=64(k+1)2-64k2=0,可得k=-,所以,所求的直线方程为y=-x-4.(2)根据题意,联立直线与抛物线的方程,有
15、可得k2x2-8(k+1)x+16=0,因为k0,所以=64(k+1)2-64k20,则有x1+x2=,所以y1+y2=k(x1+x2)-8=,因为四边形OACB为平行四边形,则=+=(x1+x2,y1+y2)=,即C,因为ACQC,则kACkQC=-1.又kQC=,又kAC=kOB=k-,所以=-1,所以=k+2,又由k0,则=k+22+2=2(+1),当且仅当k=时等号成立,此时0x24(-1).故x2的取值范围为(0,4(-1).【拓广探索练】1.已知抛物线C:y2=4x的焦点为F,P为抛物线C上一动点,M(3,2),则PMF的周长最小值为()A.4B.1+2+C.3+2D.4+2【解析
16、】选D.如图,抛物线C:y2=4x的焦点为F(1,0),准线方程为x=-1.过M作准线的垂线,交抛物线于P,则PMF的周长最小.最小值为4+=4+2.2.在直角坐标系xOy中,抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,直线MN与x轴交于点R,若NFR=60,则|NR|=()A.2B.C.2D.3【解析】选A.根据题意,如图所示:连接MF,QF,抛物线的方程为y2=4x,其焦点为F(1,0),准线为x=-1,则|FH|=2,由抛物线定义可得|PF|=|PQ|,由PQl,得:PQFR,所以QPF=NFR,又NFR=60,所以QPF=60,所以PQF为等边三角形,由M,N分别为PQ,PF的中点,得|MN|=|QF|,MNQF,且MFPQ,又QHPQ,QMHF,故四边形HFMQ为矩形,故|QM|=|HF|=2,又在RtQMF中,|QF|=4,故|MN|=|QF|=2,又PQRF,|PN|=|NF|,所以|NR|=|MN|=2.关闭Word文档返回原板块