1、2025/12/11.1回归分析的基本思想及其初步应用高二数学 选修1-2 比较数学3中“回归”增加的内容数学统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程ybxa4.用回归直线方程解决应用问题选修-统计案例5.引入线性回归模型ybxae6.了解模型中随机误差项e产生的原因7.了解相关指数 R2 和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否-有一个确定性的关系?例如:在 7 块并排、形状大小相同的试
2、验田上 进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x 15 20 25 30 35 40 45水稻产量y 330 345 365 405 445 450 455复习、变量之间的两种关系自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):2、现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等负相关正相关什么是回归分析:“回归”一词是由英国生物学家F.Galton在研究人体身高的
3、遗传问题时首先提出的。根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,Y记子辈身高。虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,X和Y之间存在一种相关关系。一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈的身高有向中心回归的特点。“回归”一词即源于此。虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的回归含义是相同的。不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,
4、它是一种应用于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。回归分析的内容与步骤:统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量。回归分析通过一个变量或一些变量的变化解释另一变量的变化。其主要内容和步骤是:首先根据对问题的分析判断,变量分为自变量和因变量;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;最小二乘法:称为样本点的中心。对两个变量进行的线性分析叫做线性回归分析。2、回归直线方程:相应的直线叫做回归直线。所求直线方程叫做回归直-线方程;其中例1 从某大学中随机选取
5、8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量2.回归方程:1.散点图;例1 从某大学中随机选取8名女大学生,其身高和体重数据如表
6、1-1所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你
7、能解析一下原因吗?我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。思考:产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、忽略了其它因素的影响:影响身高 y 的因素不只是体重 x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 y 的观测误差。以上三项误差越小,说明我们的回归模型的拟合效果越好。函数模型与回归模型之间的差别函数模型:回归模型:可以提供选择模型的准则函数模型与回归模型之间的差别函数模型:回归模型:线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自
8、变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为思考:如何刻画预报变量(体重)的变化?这个变化在多大程度上与解析变量(身高)有关?在多大程度上与随机误差有关?假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。在体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值,即8个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/
9、cm87654321编号54.5kg在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如此。这就意味着预报变量(体重)的值受解析变量(身高)或随机误差的影响。对回归模型进行统计检验5943616454505748体重/kg170155165175170157165165身高/cm87654321编号例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析变量(身高)和随机误差共同把这名学生的体重从54.5kg“推”到了61kg,相差6.5kg,所以6.5kg是解析变量和随机误差的组合效应。编号为3的女大学生的体重并也没有落在水平直线上,她的体重为50kg。解
10、析变量(身高)和随机误差共同把这名学生的体重从50kg“推”到了54.5kg,相差-4.5kg,这时解析变量和随机误差的组合效应为-4.5kg。用这种方法可以对所有预报变量计算组合效应。数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用表示总的效应,称为总偏差平方和。在例1中,总偏差平方和为354。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差?假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点
11、将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了。在例1中,残差平方和约为128.361。因此,数据点和它在回归直线上相应位置的差异是随机误差的效应,称为残差。例如,编号为6的女大学生,计算随机误差的效应(残差)为:对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号称为残差平方和,它代表了随机误差的效应。表示为:即,由于解析变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为128.361,所以解析变量的效应为解析变量和随机误差的总效应(总偏差平方和)=解析变量的效应
12、(回归平方和)+随机误差的效应(残差平方和)354-128.361=225.639 这个值称为回归平方和。我们可以用相关指数R2来刻画回归的效果,其计算公式是样本决定系数(判定系数 R2)1.回归平方和占总偏差平方和的比例2.反映回归直线的拟合程度3.取值范围在 0,1 之间4.R2 1,说明回归方程拟合的越好;R20,说明回归方程拟合的越差5.判定系数等于相关系数的平方,即R2(r)2显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性
13、越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。总的来说:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。我们可以用相关指数R2来刻画回归的效果,其计算公式是1354总计0.36128.361残差变量0.64225.639随机误差比例平方和来源表1-3从表3-1中可以看出,解析变量对总效应约贡献了64%,即R2 0.64,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。我们可以用相关指数R2来刻画回归的
14、效果,其计算公式是表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。残差分析与残差图的定义:然后,我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身
15、高数据,或体重估计值等,这样作出的图形称为残差图。2025/12/1残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;对于远离横轴的点,要特别注意。身高与体重残差图异常点 错误数据 模型问题几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越
16、高。例2、在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为:求出Y对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753解:练习、在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为:求出Y对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753列出残差表为0.994因而,拟合效果较好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.4用身高预报体重时,需要注意下列问题:1、回归方程只适用于我们所研究的样本的总体;2、我们所建立的回归方程一般都有时间性;3、样本采集的范围会影响回归方程的适用范
17、围;4、不能期望回归方程得到的预报值就是预报变量的精确值。事实上,它是预报变量的可能取值的平均值。这些问题也使用于其他问题。涉及到统计的一些思想:模型适用的总体;模型的时间性;样本的取值范围对模型的影响;模型预报结果的正确理解。小结一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有
18、异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。作业:课本第9页1一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是
19、否合适等。例2:一只红铃虫的产卵数y与温度x有关,现收集了7组观测数据,试建立y与x之间的回归方程解:1)作散点图;从散点图中可以看出产卵数和温度之间的关系并不能用线性回归模型来很好地近似。这些散点更像是集中在一条指数曲线或二次曲线的附近。解:令则z=bx+a,(a=lnc1,b=c2),列出变换后数据表并画出x与z 的散点图x和z之间的关系可以用线性回归模型来拟合x21232527293235z1.9462.3983.0453.1784.194.7455.7842)用 y=c3x2+c4 模型,令,则y=c3t+c4,列出变换后数据表并画出t与y 的散点图散点并不集中在一条直线的附近,因此用
20、线性回归模型拟合他们的效果不是最好的。t4415296257298411024 1225y711212466115325残差表编号1234567x21232527293235y711212466115325e(1)0.52-0.1671.76-9.1498.889-14.15332.928e(2)47.7 19.397-5.835-41.003-40.107-58.26877.965非线性回归方程二次回归方程残差公式 在此处可以引导学生体会应用统计方法解决实际问题需要注意的问题:对于同样的数据,有不同的统计方法进行分析,我们要用最有效的方法分析数据。现在有三个不同的回归模型可供选择来拟合红铃虫的产卵数与温度数据,他们分别是:可以利用直观(散点图和残差图)、相关指数来确定哪一个模型的拟合效果更好。相关系数正相关;负相关通常,r-1,-0.75-负相关很强;r0.75,1正相关很强;r-0.75,-0.3-负相关一般;r0.3,0.75正相关一般;r-0.25,0.25-相关性较弱;相关系数1.计算公式 2相关系数的性质(1)|r|1(2)|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小 问题:达到怎样程度,x、y线性相关呢?它们的相关程度怎样呢?