收藏 分享(赏)

重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt

上传人:a**** 文档编号:472709 上传时间:2025-12-08 格式:PPT 页数:23 大小:451.50KB
下载 相关 举报
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第1页
第1页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第2页
第2页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第3页
第3页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第4页
第4页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第5页
第5页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第6页
第6页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第7页
第7页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第8页
第8页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第9页
第9页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第10页
第10页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第11页
第11页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第12页
第12页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第13页
第13页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第14页
第14页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第15页
第15页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第16页
第16页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第17页
第17页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第18页
第18页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第19页
第19页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第20页
第20页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第21页
第21页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第22页
第22页 / 共23页
重庆市秀山高级中学高中数学新人教A版必修四课件:2-3-1-2平面向量的基本定理及坐标表示 .ppt_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理2.3.2 平面向量的正交分解及坐标表示问题提出 1.向量加法与减法有哪几种几何运算法则?2.怎样理解向量的数乘运算a?(1)|a|=|a|;(2)0时,a与a方向相同;0时,a与a方向相反;=0时,a=0.3.平面向量共线定理是什么?4.如图,光滑斜面上一个木块受到的重力为G,下滑力为F1,木块对斜面的压力为F2,这三个力的方向分别如何?三者有何相互关系?GF1F2非零向量a与向量b共线存在唯一实数,使ba.5.在物理中,力是一个向量,力的合成就是向量的加法运算.力也可以分解,任何一个大小不为零的力,都可以分解成两个不同方向的分

2、力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论.探究(一):平面向量基本定理思考1:给定平面内任意两个向量e1,e2,如何求作向量3e12e2和e12e2?e1e22e2BCO3e1 Ae1 D3e12e2e1-2e2思考2:如图,设OA,OB,OC为三条共点射线,P为OC上一点,能否在OA、OB上分别找一点M、N,使四边形OMPN为平行四边形?MNOABCP思考3:在下列两图中,向量不共线,能否在直线OA、OB上分别找一点M、N,使?OABCMNOABCMN思考4:在上图中,设=e1,=e2,=a,则向量分别与e1,e2的关系如何?从而向量a与e1,e2的关系如何?OABCM

3、NOABCMN思考5:若上述向量e1,e2,a都为定向量,且e1,e2不共线,则实数1,2是否存在?是否唯一?OABCMNOABCMN思考6:若向量a与e1或e2共线,a还能用1e12e2表示吗?e1aa=1e1+0e2e2aa=0e1+2e2思考7:根据上述分析,平面内任一向量a都可以由这个平面内两个不共线的向量e1,e2表示出来,从而可形成一个定理.你能完整地描述这个定理的内容吗?若e1、e2是同一平面内的两个不共线向量,则对于这一平面内的任意向量a,有且只有一对实数1,2,使a1e12e2.思考8:上述定理称为平面向量基本定理,不共线向量e1,e2叫做表示这一平面内所有向量的一组基底.那

4、么同一平面内可以作基底的向量有多少组?不同基底对应向量a的表示式是否相同?若e1、e2是同一平面内的两个不共线向量,则对于这一平面内的任意向量a,有且只有一对实数1,2,使a1e12e2.探究(二):平面向量的正交分解及坐标表示0,180 思考1:不共线的向量有不同的方向,对于两个非零向量a和b,作a,b,如图.为了反映这两个向量的位置关系,称AOB为向量a与b的夹角.你认为向量的夹角的取值范围应如何约定为宜?baabABO思考2:如果向量a与b的夹角是90,则称向量a与b垂直,记作ab.互相垂直的两个向量能否作为平面内所有向量的一组基底?ba思考3:把一个向量分解为两个互相垂直的向量,叫做把

5、向量正交分解.如图,向量i、j是两个互相垂直的单位向量,向量a与i的夹角是30,且|a|=4,以向量i、j为基底,向量a如何表示?BaiOjAP思考4:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,对于平面内的一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得axiyj.我们把有序数对(x,y)叫做向量a的坐标,记作a(x,y).其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示.那么x、y的几何意义如何?aixyOjxy思考5:相等向量的坐标必然相等,作向量 a,则(x,y),此时点A是坐标是什么?A aixyOjA(x,y)

6、理论迁移 例1 如图,已知向量e1、e2,求作向量2.5e13e2.e1e2COA 2.5e1B3e2例2 如图,写出向量a,b,c,d的坐标.2452abcd4 252xyOa=(2,3)b=(-2,3)c=(-2,-3)d=(2,-3)例3 如图,在平行四边形ABCD中,=a,=b,E、M分别是AD、DC的中点,点F在BC上,且BC=3BF,以a,b为基底分别表示向量和.ABEDCFM小结作业 1.平面向量基本定理是建立在向量加法和数乘运算基础上的向量分解原理,同时又是向量坐标表示的理论依据,是一个承前起后的重要知识点.2.向量的夹角是反映两个向量相对位置关系的一个几何量,平行向量的夹角是0或180,垂直向量的夹角是90.3.向量的坐标表示是一种向量与坐标的对应关系,它使得向量具有代数意义.将向量的起点平移到坐标原点,则平移后向量的终点坐标就是向量的坐标.作业:P102习题2.3B组:3,4.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1