1、2013 届新课标高三数学精华试题每天一练(43)特约解析人:辽宁数学名师群官方 已知椭圆的焦点坐标为(-1,0),(1,0),过垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3,(1) 求椭圆的方程;(2) 过的直线l与椭圆交于不同的两点M、N,则MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.【命题分析】本题考查椭圆的方程,直线和椭圆的相交问题等综合问题. 考查学生利用待定系数法和解析法的解题能力. 待定系数法:如果题目给出是何曲线,可根据题目条件,恰当的设出曲线方程,然后借助条件进一步确定求椭圆的标准方程应从“定形”“定式”“定量”三个方面
2、去思考。“定形”是指对称中心在原点,焦点在哪条对称轴上;“定式”是指根据“形”设出相应的椭圆方程的具体形式;“定量”是指利用定义法或待定系数法确定的值.本题第一问利用椭圆的离心率和点在直线上得到两个等式求解的值;在直线与椭圆的位置关系问题中,一类是直线和椭圆关系的判断,利用判别式法.另一类常与“弦”相关:“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式.在求解弦长问题中,要注意直线是否过焦点,如果过焦点,一般可采用焦半径公式求解;如果不过,就用一般方法求解.要注意利用椭圆自身的范围来确定自变量的范围,涉
3、及二次方程时一定要注意判别式的限制条件.本题的第二问利用直线和椭圆联立,借助求根公式和面积公式确定MN的内切圆的面积与k的函数关系式,构造函数留影求导确定是否存在问题.解:(1) 设椭圆方程为=1(ab0),由焦点坐标可得c=1由PQ|=3,可得=3,解得a=2,b=,故椭圆方程为=1(2) 设M,N,不妨0, 0,设MN的内切圆的径R,则MN的周长=4a=8,(MN+M+N)R=4R因此最大,R就最大,由题知,直线l的斜率不为零,可设直线l的方程为x=my+1,由得+6my-9=0,得,则AB()=,令t=,则t1,则,令f(t)=3t+,则f(t) =3-,当t1时,f(t)0,f(t)在1,+)上单调递增,有f(t)f(1)=4, =3,即当t=1,m=0时,=3, =4R,=,这时所求内切圆面积的最大值为.故直线l:x=1,AMN内切圆面积的最大值为