收藏 分享(赏)

《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第39练.docx

上传人:高**** 文档编号:456780 上传时间:2024-05-28 格式:DOCX 页数:5 大小:53.68KB
下载 相关 举报
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第39练.docx_第1页
第1页 / 共5页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第39练.docx_第2页
第2页 / 共5页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第39练.docx_第3页
第3页 / 共5页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第39练.docx_第4页
第4页 / 共5页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第39练.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第39练二项式定理的两类重点题型求和与求展开项题型一用公式求展开项例1若()n展开式中只有第六项的二项式系数最大,则展开式中的常数项是()A360 B180 C90 D45破题切入点从第六项二项式系数最大可得n值,再利用展开式的通项公式即可答案B解析依题意知:n10,Tk1C()10k()kC2kx5k,令5k0,得k2,常数项为C22180.题型二赋值法求系数之和例2若(12x)2na0a1xa2x2a2n1x2n1a2nx2n,则a1a3a2n1_.破题切入点令x1可得关于各项系数的两个方程,联立方程即可求解答案解析令x1,得a0a1a2a2n3n;令x1,得a0a1a2a2n1a2n1.

2、,可得a1a3a2n1.总结提高(1)(1)在使用通项公式Tk1Cankbk时,通项公式表示的是第k1项的值,而不是第k项的值,展开式中第k1项的二项式系数C与第k1项的系数不同(2)二项展开式中项的系数的和或差可以通过对二项式展开式两端字母的赋值进行解决,一般是对x赋值为1或0.另外要注意掌握(1x)n展开式中各项系数的绝对值的和就是展开式中各项系数的和,只需令x1即可而要求(1x)n的展开式中各项系数的绝对值的和,只需令x1即可1(2014四川)在x(1x)6的展开式中,含x3项的系数为()A30 B20 C15 D10答案C解析因为(1x)6的展开式的第k1项为Tk1Cxk,x(1x)6

3、的展开式中含x3的项为Cx315x3,所以系数为15.2(2014浙江)在(1x)6(1y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)f(2,1)f(1,2)f(0,3)等于()A45 B60 C120 D210答案C解析因为f(m,n)CC,所以f(3,0)f(2,1)f(1,2)f(0,3)CCCCCCCC120.3设n的展开式的各项系数之和为M,二项式系数之和为N,若MN240,则展开式中x的系数为()A150 B150 C300 D300答案B解析Mn4n,N2n4n2n2402n16n4,Tr1(1)rC54rx4r2,则(1)2C52150.4设aZ,且0a13

4、,若512 012a能被13整除,则a的值为()A0 B1 C11 D12答案D解析化51为521,用二项式定理展开512 012a(521)2 012aC522 012C522 011C52(1)2 011C(1)2 012a.因为52能被13整除,所以只需C(1)2 012a能被13整除,即a1能被13整除,因为0a0)的展开式中常数项为240,则(xa)(x2a)2的展开式中x2项的系数为_答案6解析(x)6的二项展开式的通项Tk1Cx6k()kCakx6,令60,得k4,则其常数项为Ca415a4240,则a416,由a0,故a2.又(xa)(x2a)2的展开式中,x2项为3ax2,故

5、x2项的系数为(3)26.10(1)20的二项展开式中,x的系数与x9的系数之差为_答案0解析Tk1C(x)k(1)kCx,x与x9的系数分别为C与C.又CC,CC0.11已知(12)n的展开式中,某一项的系数是它前一项系数的2倍,而又等于它后一项系数的.(1)求展开后所有项的系数之和及所有项的二项式系数之和;(2)求展开式中的有理项解根据题意,设该项为第r1项,则有即亦即解得(1)令x1得展开式中所有项的系数之和为(12)7372 187.所有项的二项式系数之和为27128.(2)展开式的通项为Tr1C2rx,r7且rN.于是当r0,2,4,6时,对应项为有理项,即有理项为T1C20x01,

6、T3C22x84x,T5C24x2560x2,T7C26x3448x3.12已知n.(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项解(1)因为CC2C,所以n221n980,解得n7或n14.当n7时,展开式中二项式系数最大的项是T4和T5.所以T4的系数为C423,T5的系数为C32470.当n14时,展开式中二项式系数最大的项是T8.所以T8的系数为C7273 432.(2)因为CCC79,所以n12或n13(舍去)设Tk1项的系数最大因为1212(14x)12,所以,所以9.4k10.4.又因为0k12且kN,所以k10.所以展开式中系数最大的项为T11.T1112C410x1016 896x10.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3