收藏 分享(赏)

2015-2016学年高一数学人教B版必修4课件:1.pptx

上传人:高**** 文档编号:449016 上传时间:2024-05-28 格式:PPTX 页数:30 大小:759.88KB
下载 相关 举报
2015-2016学年高一数学人教B版必修4课件:1.pptx_第1页
第1页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第2页
第2页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第3页
第3页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第4页
第4页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第5页
第5页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第6页
第6页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第7页
第7页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第8页
第8页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第9页
第9页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第10页
第10页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第11页
第11页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第12页
第12页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第13页
第13页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第14页
第14页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第15页
第15页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第16页
第16页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第17页
第17页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第18页
第18页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第19页
第19页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第20页
第20页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第21页
第21页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第22页
第22页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第23页
第23页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第24页
第24页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第25页
第25页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第26页
第26页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第27页
第27页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第28页
第28页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第29页
第29页 / 共30页
2015-2016学年高一数学人教B版必修4课件:1.pptx_第30页
第30页 / 共30页
亲,该文档总共30页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第一章 学习目标 1.掌握正弦、余弦、正切函数的定义域.2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切.3.能利用三角函数线解决一些简单的三角函数问题.1.2 任意角的三角函数1.2.2 单位圆与三角函数线栏目索引 CONTENTS PAGE 1 预习导学 挑战自我,点点落实 2 课堂讲义 重点难点,个个击破 3 当堂检测 当堂训练,体验成功 4 1.2.2 单位圆与三角函数线 预习导学 挑战自我,点点落实 知识链接 1.什么叫做单位圆?答 以坐标原点为圆心,以一个单位长度为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米).5 1.2.2 单位

2、圆与三角函数线2.带有方向的线段叫.有向线段的大小称为它的.在坐标系中,规定:有向线段的方向与坐标系的.即同向时,;反向时,.有向线段数量方向相同数量为正数量为负6 1.2.2 单位圆与三角函数线预习导引 1.三角函数的定义域 正弦函数ysin x的定义域是R;余弦函数ycos x的定义域是R;正切函数ytan x的定义域是.x|xR 且 xk2,kZ7 1.2.2 单位圆与三角函数线2.三角函数线 如图,设单位圆与x轴的正半轴交于点A,与角的终边交于P点.过点P作x轴的垂线PM,垂足为M,过A作单位圆的切线交OP的延长线(或反向延长线)于T点.单位圆中的有向线段、分别叫做角的正弦线、余弦线、

3、正切线.记作:sin,cos,tan.MPOMATMPOMAT8 1.2.2 单位圆与三角函数线 课堂讲义 重点难点,个个击破 要点一 利用三角函数线比较大小例 1 分别作出23 和45 的正弦线、余弦线和正切线,并比较 sin 23和 sin 45,cos 23 和 cos 45,tan 23 和 tan 45 的大小.解 如图,sin 23 MP,cos 23 OM,tan 23 AT,sin 45 MP,cos 45 OM,tan 45 AT.9 1.2.2 单位圆与三角函数线sin 23 sin 45;|OM|cos 45;|AT|AT|,符号均为负,tan 23|MP|,符号均为正,

4、10 1.2.2 单位圆与三角函数线规律方法 利用三角函数线比较三角函数值的大小时,一般分三步:(1)角的位置要“对号入座”;(2)比较三角函数线的长度;(3)确定有向线段的正负.11 1.2.2 单位圆与三角函数线跟踪演练 1 利用三角函数线比较 asin 57,bcos 27,ctan 27 的大小.解 如图,在单位圆 O 中分别作出角57 的正弦线 M1P1 和27 的余弦线 OM2、正切线 AT.由57 27 知 M1P1M2P2,12 1.2.2 单位圆与三角函数线又427 M2P2OM2,cos 27sin 57 tan 27,故 bac.13 1.2.2 单位圆与三角函数线例2

5、利用单位圆中的三角函数线,分别确定角的取值范围.要点二 利用三角函数线解不等式(1)sin 32;解 如图,作直线 y 32 交单位圆于点 P、Q,连接 OP、OQ,14 1.2.2 单位圆与三角函数线则 OP、OQ 与单位圆围成的区域即为角 的终边的范围(阴影部分),故满足条件的角 的集合为2k32k23,kZ.15 1.2.2 单位圆与三角函数线(2)12cos 32.解 如图,作直线 x-12和 x 32 分别交单位圆于点 M,N,P,Q,连接 OM、ON、OP、OQ,16 1.2.2 单位圆与三角函数线则 OM、ON、OP、OQ 与单位圆围成的区域即为角 的终边的范围(阴影部分).故满

6、足条件的角 的集合为 2k23 2k6或 2k60,tan 0,sin cos,tan 0.结合单位圆(如图所示)中三角函数线及02.可知42或 0.即cos x12,sin x 22.解 由题意,自变量x应满足不等式组20 1.2.2 单位圆与三角函数线则不等式组的解的集合如图(阴影部分)所示,x|2k3x0,sin2x34,32 sin x 32.如图所示.x2k3,2k3 2k23,2k43(kZ),即 xn3,n3(nZ).23 1.2.2 单位圆与三角函数线 当堂检测 当堂训练,体验成功 1.角(0”或“sin 34 MP;cos 23 OMcos 34 OM;tan 23 AT(2

7、)(3)28 1.2.2 单位圆与三角函数线课堂小结1.三角函数线的意义 三角函数线是用单位圆中某些特定的有向线段的长度和方向表示三角函数的值,三角函数线的长度等于三角函数值的绝对值,方向表示三角函数值的正负.具体地说,正弦线、正切线的方向同纵坐标轴一致,向上为正,向下为负;余弦线的方向同横坐标轴一致,向右为正,向左为负.三角函数线将抽象的数用几何图形表示出来了,使得问题更形象直观,为从几何途径解决问题提供了方便.29 1.2.2 单位圆与三角函数线2.三角函数线的画法 定义中不仅定义了什么是正弦线、余弦线、正切线,同时也给出了角的三角函数线的画法即先找到P、M、T点,再画出MP、OM、AT.注意三角函数线是有向线段,要分清始点和终点,字母的书写顺序不能颠倒.30 1.2.2 单位圆与三角函数线3.三角函数线是三角函数的几何表示,它直观地刻画了三角函数的概念.与三角函数的定义结合起来,可以从数与形两方面认识三角函数的定义,并使得对三角函数的定义域、函数值符号的变化规律的理解容易了.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3