1、本作品版权由孙小明老师所有,授权予北京校园之星科技有限公司,任何机构或个人均不得擅自复制、传播。本公司热忱欢迎广大一线教师加入我们的作者队伍。有意者请登录高考资源网()版权所有,盗用必究!共9页第9页7.6圆的方程圆的标准方程 一、教学目标1、知识目标:(1)使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程.(2)能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程2、能力目标:(1)通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力3、德育目标:圆基于初中的知识,同时又是初中的知识的加深,使
2、学生懂得知识的连续性;通过圆的标准方程,可解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育二、教材分析学习了“曲线与方程“之后,作为一般曲线典体例子,安排了本节的“圆的方程” 圆是学生比较熟悉的曲线,在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究它的方程,它与其他图形的位置关系及其应用 同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其它圆锥曲线的方程奠定了基础 也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用由于“圆的方程”一节
3、内容的基础性和应用的广泛性,对圆的标准方程、一般方程的要求层次是“掌握”;因为是第一次系统地介绍参数方程,对参数方程的学习有一个循序渐进的过程,因而对圆的参数方程只要求“理解”,今后讲圆锥曲线时还有所涉及 结合本节的内容的特点,可以向学生渗透多种数学思想方法,同时对学生的观察类比、创新等多种能力的培养也十分有利 在运用多种方法求圆的方程中,可培养学生大胆探索创新的精神;通过知识的实际运用和采用多媒体手段,培养学生学习数学的兴趣;而一些曲线上动点的变化,和方程形式,解法的多样,也有助于学生树立辩证唯物主义的运动观和普遍联系的观点 遵循从特殊到一般的原则,只有把圆的标准方程学透了,再过渡到学圆的一
4、般也就不难,它们可以通过形式上的互相转化而解决 因而本节的重点是圆的标准方程及直线与圆的位置关系(尤其是圆的切线) 又由于圆的一般方程中含有三个参变数D、E、F,对它的理解带来一定的困难,因而本节的难点是对圆的一般方程的认识、掌握和运用 突破难点的关键是抓住一般方程的特点,把握住求圆的方程的两个基本要素:圆心坐标和半径依照大纲,本节分为三个课时进行教学 第一课时讲解圆的标准方程 为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计 所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学
5、过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来。教师的每项教学措施,都是给学生创造一种思维情景,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题 其基本教学模式是:复习旧知以旧悟新提出问题尝试探究例题示范探求方法反馈练习学会应用点评矫正总结交流 1教学重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程(解决办法:(1)通过设问,消除难点,并详细讲解;(2)多多练习、讲解)2教学难点:运用圆的标准方程解决一些简单的实际问题(解决办法:使学生掌握分析这类问题的方法是先弄清题意,再建立适当的直角坐标系,使圆的标准方程形式简
6、单,最后解决实际问题)三、活动设计问答、讲授、设问、演板、重点讲解、归纳小结、阅读四、教学过程(一)创设情境前面,大家学习了圆的概念,哪一位同学来回答?问题1:具有什么性质的点的轨迹称为圆?平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆)问题2:图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小问题3:求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M
7、的坐标,简称建系设点;图2-9(2)写出适合条件P的点M的集合P=M|P(M)|,简称写点集;(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;(4)化方程f(x,y)=0为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明其中步骤(1)(3)(4)必不可少(二)探究新知1、圆的标准方程下面我们用求曲线方程的一般步骤来建立圆的标准方程(1)建系设点由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,
8、y)(2)写点集根据定义,圆就是集合P=M|MC|=r(3)列方程由两点间的距离公式得:(4)化简方程将上式两边平方得:(x-a)2+(y-b)2=r2(1)方程(1)就是圆心是C(a,b)、半径是r的圆的方程我们把它叫做圆的标准方程这时,请大家思考下面一个问题问题5:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1点(a,b)、r分别表示圆心的坐标和圆的半径当圆心在原点即C(0,0)时,方程为 x2+y2=r2教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r0,圆的方程就给
9、定了这就是说要确定圆的方程,必须具备三个独立的条件注意,确定a、b、r,可以根据条件,利用待定系数法来解决(三)范例与变式例1 写出下列各圆的方程:(请四位同学演板)(1)圆心在原点,半径是3;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切教师纠错,分别给出正确答案:(1)x2+y2=9;(2)(x-3)2+(y-4)2=5;指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程例2 说出下列圆的圆心和半径:(学生回答)(1)(x-3)2+(y-2)2=5;(2)(x+4)2+(y+3)2=7;(3)(x+2)2+ y2=4教师指
10、出:已知圆的标准方程,要能够熟练地求出它的圆心和半径例3 (1)已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?解(1):分析一:从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决解法一:(学生口答)设圆心C(a,b)、半径r,则由C为P1P2的中点得:又由两点间的距离公式得:所求圆的方程为:(x-5)2+(y-6)2=10分析二:从图形上动点P性质考虑,用求曲线方程的一般方法解决解法二:(给出板书)直径上的四周角是直角,对于圆上任一点P(x,y),有PP1PP2化简得:x2+y2-1
11、0x-12y+51=0即(x-5)2+(y-6)2=10为所求圆的方程解(2):(学生阅读课本)分别计算点到圆心的距离:因此,点M在圆上,点N在圆外,点Q在圆内这时,教师小结本题:1求圆的方程的方法(1)待定系数法,确定a,b,r;(2)轨迹法,求曲线方程的一般方法2点与圆的位置关系设点到圆心的距离为d,圆半径为r:(1)点在圆上 d=r;(2)点在圆外 dr;(3)点在圆内 dr3以A(x1,y1)、B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0(证明留作作业)例4 图2-10是某圆拱桥的孔圆拱的示意图该圆拱跨度AB=20m,拱高OP=4m,在建
12、造时每隔4m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01m)此例由学生阅读课本,教师巡视并做如下提示:(1)先要建立适当直角坐标系,使圆的标准方程形式简单,便于计算;(2)用待定系数法求圆的标准方程;(3)要注意P2的横坐标x=-20,纵坐标y0,所以A2P2的长度只有一解(四)反馈练习1求下列各圆的标准方程:(1)圆心在上且过两点(2,0),(0,-4);(2)圆心在直线上,且与直线切于点(2,-1).(3)圆心在直线上,且与坐标轴相切分析:从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数解:(1)设圆心坐标为(),则所求圆的方程为,圆心在上, 又圆过(2,0),
13、(0,-4) 由联立方程组,可得所求圆的方程为(2)圆与直线相切,并切于点M(2,-1),则圆心必在过点M(2,-1)且垂直于的直线:上, ,即圆心为C(1,-2),=,所求圆的方程为:(3)设所求圆的方程为,圆与坐标轴相切, 又圆心()在直线上,由,得所求圆的方程为:或2.已知圆求:(1)过点A(4,-3)的切线方程.(2)过点B(-5,2)的切线方程分析:求过一点的切线方程,当斜率存在时可设为点斜式,利用圆心到切线的距离等于圆的半径列出方程,求出斜率k的值,斜率不存在时,结合图形验证;当然若过圆上一点的切线方程,可利用公式求得解:(1)点A(4,-3)在圆上过点A的切线方程为:(2)点点B(-5,2)不在圆上,当过点B(-5,2)的切线的斜率存在时,设所求切线方程为,即由,得此时切线方程为:当过点B(-5,2)的切线斜率不存在时,结合图形可知=-5,也是切线方程综上所述,所求切线方程为:或=-5(五)本课小结1圆的方程的推导步骤;2圆的方程的特点:点(a,b)、r分别表示圆心坐标和圆的半径;3求圆的方程的两种方法:(1)待定系数法;(2)轨迹法(六)布置作业习题7.6 1、2、3、4(七)板书设计