收藏 分享(赏)

2012年高三数学第一轮复习教案(新人教A)向量的概念、向量的加法与减法、实数与向量的积2.doc

上传人:高**** 文档编号:429670 上传时间:2024-05-27 格式:DOC 页数:5 大小:456.50KB
下载 相关 举报
2012年高三数学第一轮复习教案(新人教A)向量的概念、向量的加法与减法、实数与向量的积2.doc_第1页
第1页 / 共5页
2012年高三数学第一轮复习教案(新人教A)向量的概念、向量的加法与减法、实数与向量的积2.doc_第2页
第2页 / 共5页
2012年高三数学第一轮复习教案(新人教A)向量的概念、向量的加法与减法、实数与向量的积2.doc_第3页
第3页 / 共5页
2012年高三数学第一轮复习教案(新人教A)向量的概念、向量的加法与减法、实数与向量的积2.doc_第4页
第4页 / 共5页
2012年高三数学第一轮复习教案(新人教A)向量的概念、向量的加法与减法、实数与向量的积2.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第五章 平面向量网络体系总览考点目标定位 1.向量、向量的加法与减法、实数与向量的积. 2.平面向量的坐标表示、线段的定比分点. 3.平面向量的数量积、平面两点间的距离、平移公式. 4.正弦定理、余弦定理、斜三角形的解法.复习略指南 向量是数学中的重要概念,它广泛应用于生产实践和科学研究中,其重要性逐渐加强.从近几年高考试题可以看出,主要考查平面向量的加减运算、平面向量的坐标表示、平面向量的数量积、图形的平移等基本概念、运算及简单应用.随着新教材的逐步推广、使用,“平面向量”将会成为命题的热点,一般选择题、填空题重在考查平面向量的概念、数量积及其运算律.本单元试题的常见类型有: (1)与“定比

2、分点”有关的试题; (2)平面向量的加减法运算及其几何意义; (3)平面向量的数量积及运算律,平面向量的坐标运算,用向量的知识解决几何问题; (4)正、余弦定理的应用. 复习本章时要注意: (1)向量具有大小和方向两个要素.用线段表示向量时,与有向线段起点的位置没有关系,同向且等长的有向线段都表示同一向量. (2)共线向量和平面向量的两条基本定理,揭示了共线向量和平面向量的基本结构,它们是进一步研究向量的基础. (3)向量的加、减、数乘积是向量的线性运算,其结果仍是向量.向量的数量积结果是一个实数.向量的数量积,可以计算向量的长度、平面内两点间距离、两个向量的夹角,判断相应的两条直线是否垂直.

3、 (4)向量的运算与实数的运算有异同点,学习时要注意这一点,如数量积不满足结合律. (5)要注意向量在几何、三角、物理学中的应用. (6)平面向量与空间向量的数量积及坐标运算是高考的重点,复习中要注意培养准确的运算能力和灵活运用知识的能力.5.1 向量的概念、向量的加法与减法、实数与向量的积巩固夯实基础 一、自主梳理 1.平面向量的有关概念 (1)向量的定义:既有大小又有方向的量叫做向量. (2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a,b,或用,表示. (3)模:向量的长度叫向量的模,记作|a|或|. (4)零向量:长度为零的向量

4、叫做零向量,记作0;零向量的方向不确定. (5)单位向量:长度为1个长度单位的向量叫做单位向量. (6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线. (7)相等的向量:长度相等且方向相同的向量叫相等的向量. 2.向量的加法 (1)定义:求两个向量和的运算,叫做向量的加法. (2)法则:三角形法则、平行四边形法则. (3)运算律:a+b=b+a;(a+b)+c=a+(b+c). 3.向量的减法 (1)定义:求两个向量差的运算,叫做向量的减法. (2)法则:三角形法则、平行四边形法则. 4.实数与向量的积 (1)定义:实数与向量a的积是一个向量,记作a,规定:|a|=|a|

5、.当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当=0时,a与a平行. (2)运算律:(a)=()a,(+)a=a+a,(a+b)=a+b. 5.两个重要定理 (1)向量共线定理:向量b与非零向量a共线的充要条件是有且仅有一个实数,使得b=a,即bab=a(a0). (2)平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且仅有一对实数1、2,使a=1e1+2e2. 二、点击双基1.若平面向量b与向量a=(1,-2)的夹角是180,且|b|=3,则b等于( )A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)解

6、析:易知a与b方向相反,可设b=(,-2)(0.又|b|=3=,解之得=-3或=3(舍去).b=(-3,6).答案:A2已知向量a=(3,4),b=(sin,cos),且ab,则tan等于( )A. B.- C. D.-解析:由ab,3cos=4sin.tan=.答案:A(文)下列算式中不正确的是( )A.+=0 B.-=C.0=0 D.(a)=()a解析:-=,故B错误.答案:B3点O是ABC所在平面内的一点,满足=,则点O是ABC的( )A.三个内角的平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点 D.三条高的交点解析:由=,可得=0,即. 同理可得,.答案:D4. O是平面

7、上一定点,A、B、C是平面上不共线的三个点,动点P满足=+(+),0,+,则P的轨迹一定通过ABC的( )A外心 B垂心 C内心 D重心解析:由=+(+),-=(+),0,+,=(+).P在BC边中线上.故P的轨迹通过ABC的重心.故选择D.答案:D5.ABC中,=3,则=_.(用和表示)解析:=-,又=3, =+=+(-)=+.答案:+诱思实例点拨 【例1】 已知向量a、b满足|a|=1,|b|=2,|a-b|=2,则|a+b|等于( )A.1 B. C. D.剖析:欲求|a+b|,一是设出a、b的坐标求,二是直接根据向量模计算.解法一:设a=(x1,y1),b=(x2,y2),则x12+y

8、12=1,x22+y22=4,a-b=(x1-x2,y1-y2), (x1-x2)2+(y1-y2)2=4. x12-2x1x2+x22+y12-2y1y2+y22=4. 1-2x1x2-2y1y2=0. 2x1x2+2y1y2=1. (x1+x2)2+(y1+y2)2=1+4+2x1x2+2y1y2=5+1=6. |a+b|=.解法二:|a+b|2+|a-b|2=2(|a|2+|b|2), |a+b|2=2(|a|2+|b|2)-|a-b|2 =2(1+4)-22=6. |a+b|=.故选D.答案:D链接提示 本题还可以利用向量的加、减运算的几何意义计算. 设=a,=b,则-=. 在OAB中

9、,cosAOB =, cosOAC=-. 在OAC中,|2=|2+|2-2|cosOAC =12+22-212(-)=6. |=,即|a+b|=.【例2】 如图,G是ABC的重心,求证:+=0.剖析:要证+=0,只需证+=-,即只需证+与互为相反的向量.证明:以向量、为邻边作平行四边形GBEC,则+=2.又由G为ABC的重心知 =2,从而=-2. +=-2+2=0.讲评:向量的加法可以用几何法进行.正确理解向量的各种运算的几何意义,能进一步加深对“向量”的认识,并能体会用向量处理问题的优越性.【例3】 设、不共线,点P在AB上,求证: =+且+=1,、R.剖析:点P在AB上,可知与共线,得=t

10、.再用以O为起点的向量表示.证明:P在AB上, 与共线. =t. -=t(-). =+t-t=(1-t)+t. 设1-t=,t=,则=+且+=1,、R.讲评:本例的重点是考查平面向量的基本定理,及对共线向量的理解及应用.链接提示 (1)本题也可变为、不共线,若=+,且+=1,R,R,求证:A、B、P三点共线. 提示:证明与共线. (2)当=时,=(+),此时P为AB的中点,这是向量的中点公式.【例4】 若a、b是两个不共线的非零向量(tR),若a与b起点相同,t为何值时,a、tb,(a+b)三向量的终点在一直线上?解:设a-tb=ma-(a+b)(mR), 化简得(-1)a=(-t)b. a与b不共线, t=时,a、tb、(a+b)的终点在一直线上.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3