收藏 分享(赏)

2022届高考数学理北师大版一轮复习训练:1-3 量词、逻辑联结词 WORD版含解析.doc

上传人:高**** 文档编号:418141 上传时间:2024-05-27 格式:DOC 页数:9 大小:224KB
下载 相关 举报
2022届高考数学理北师大版一轮复习训练:1-3 量词、逻辑联结词 WORD版含解析.doc_第1页
第1页 / 共9页
2022届高考数学理北师大版一轮复习训练:1-3 量词、逻辑联结词 WORD版含解析.doc_第2页
第2页 / 共9页
2022届高考数学理北师大版一轮复习训练:1-3 量词、逻辑联结词 WORD版含解析.doc_第3页
第3页 / 共9页
2022届高考数学理北师大版一轮复习训练:1-3 量词、逻辑联结词 WORD版含解析.doc_第4页
第4页 / 共9页
2022届高考数学理北师大版一轮复习训练:1-3 量词、逻辑联结词 WORD版含解析.doc_第5页
第5页 / 共9页
2022届高考数学理北师大版一轮复习训练:1-3 量词、逻辑联结词 WORD版含解析.doc_第6页
第6页 / 共9页
2022届高考数学理北师大版一轮复习训练:1-3 量词、逻辑联结词 WORD版含解析.doc_第7页
第7页 / 共9页
2022届高考数学理北师大版一轮复习训练:1-3 量词、逻辑联结词 WORD版含解析.doc_第8页
第8页 / 共9页
2022届高考数学理北师大版一轮复习训练:1-3 量词、逻辑联结词 WORD版含解析.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一含有逻辑联结词命题的真假判断1.若命题“pq”是真命题,“p为真命题”,则()A.p真,q真B.p假,q真C.p真,q假D.p假,q假【解析】选B.因为p为真命题,所以p为假命题,又因为pq为真命题,所以q为真命题.2.已知命题p:若xy,则-xy,则x2y2.在命题p且q;p或q;p且(q);(p)或q中,真命题是()A.B.C.D.【解析】选C.当xy时,-xy时,x2y2不一定成立,故命题q为假命题,从而q为真命题.由真值表知,p且q为假命题;

2、p或q为真命题;p且(q)为真命题;(p)或q为假命题.3.“p或q”为真命题是“p且q”为真命题的条件.(填“充分不必要”“必要不充分”或“充要”)【解析】p或q为真命题p且q为真命题;p且q为真命题p或q为真命题.答案:必要不充分1.判断含有逻辑联结词“或”“且”“非”的命题的真假(1)弄清构成它的命题p,q的真假;(2)弄清结构形式;(3)根据真值表来判断新命题的真假.2.判断复合命题的真假关键是准确判断p,q的真假,本部分内容可和其他知识建立广泛的联系,因此,要注意相关知识的熟练掌握.考点二全称命题与特称命题【典例】1.(2020西安模拟)下列命题中,真命题是()A.xR,sin2+c

3、os2=B.x(0,),sin xcos xC.xR,x2+x=-2D.x(0,+),exx+12.命题“x0,0”的否定是()A.x0,0B.x0,0x1C.x0,0D.x0,0x13.(2020武汉模拟)命题“x(0,+),ln x=x-1”的否定是世纪金榜导学号()A.x(0,+),ln xx-1B.x(0,+),ln x=x-1C.x(0,+),ln xx-1D.x(0,+),ln x=x-1【解题导思】序号联想解题1由全称命题正确,想到对所有实数都成立,由特称命题正确,想到只要存在一个实数让命题成立即可2由全称命题的否定,想到换量词,否结论3由特称命题的否定,想到换量词,否结论【解析

4、】1.选D.xR,均有sin2+cos2=1,故A是假命题;当x时,sin xcos x,故B是假命题;因为方程x2+x+2=0对应的判别式=1-80恒成立,则f(x)为增函数,故f(x)f(0)=0,即x(0,+),exx+1.2.选B.因为0,所以x1,所以0的否定是0x1,所以命题的否定是“x0,0x1”.3.选A.改变原命题中的两个地方即可得其否定,改为,否定结论,即ln xx-1.1.全称命题、特称命题的真假判断方法(1)要判断一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判断全称命题是假命题,只要能找出集合M中的一个x,使得p(x)不成立即可.(2)要判

5、断一个特称命题是真命题,只要在限定集合M中,至少能找到一个x,使p(x)成立即可,否则,这一特称命题就是假命题.(3)不管是全称命题,还是特称命题,其真假不容易正面判断时,可先判断其命题的否定的真假.2.对全称(特称)命题进行否定的两步操作(1)转换量词:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再改变量词.(2)否定结论:对原命题的结论进行否定.1.已知命题“x0,使2x(x-a)1”,则这个命题的否定是()A.x0,使2x(x-a)1B.x0,使2x(x-a)1C.x0,使2x(x-a)1D.x0,使2x(x-a)12.下列命题中,真命题是()A.xR,x2-x-10B.,R

6、,sin(+)0,使2x(x-a)1.2.选D.因为x2-x-1=-,所以A是假命题.当=0时,有sin(+)=sin +sin ,所以B是假命题.x2-x+1=+,所以C是假命题.当=时,有sin(+)=cos +cos ,所以D是真命题.考点三根据命题的真假求参数的取值范围命题精解读1.考什么:(1)根据命题的真假,求参数的取值(取值范围)(2)考查学生的数学运算、逻辑推理的核心素养2.怎么考:与方程、不等式结合,根据命题的真假,求参数的取值范围学霸好方法1.求参数问题的解题思路:(1)不等式类问题,根据集合之间的关系求解(2)恒成立、存在性问题,求最值2.交汇问题: 与方程、不等式、函数

7、等问题结合,注意恒成立、存在性问题的解决方法复合命题真假的应用【典例】已知命题p:存在实数m,使方程x2+mx+1=0有两个不等的负根;命题q:存在实数m,使方程4x2+4(m-2)x+1=0无实根.若“pq”为假命题,“pq”为真命题,则m的取值范围为世纪金榜导学号()A.3,+)B.(1,2C.(1,23,+)D.1,2)(3,+)【解析】选C.因为方程x2+mx+1=0有两个不相等的负根,所以解得m2,因为方程4x2+4(m-2)x+1=0无实根,所以0,解得1m3.因为“pq”为假命题,“pq”为真命题,所以p与q一真一假.所以或所以m的取值范围m|m3或10,若p和q都是假命题,则实

8、数m的取值范围为世纪金榜导学号()A.m2B.m-2C.m-2或m2D.-2m2【解析】1.选B.若p(q)为假命题,则p假q真.由ex-mx=0,得m=,设f(x)=,则f(x)=,当x1时,f(x)0,f(x)为增函数,当0x1时,f(x)0,f(x)为减函数,当x0时,f(x)0,f(x)为减函数,所以当x=1时,f(x)取极小值f(1)=e.所以f(x)(-,0)e,+).所以命题p为假命题时,有0m0恒成立,则有m0;当q是假命题时,则有=m2-40,m-2或m2.综上m2.若全称命题是假命题,则能得到哪个命题是真命题?同样,若特称命题是假命题,则能得到哪个命题是真命题?提示:若全称命题是假命题,则其否定特称命题是真命题,若特称命题是假命题,则其否定全称命题是真命题.1.命题“任意xR,0”的否定是()A.存在xR,0B.任意xR,0C.任意xR,”的否定是“”.2.设命题p:nN,n22n,则p为()A.nN,n22nB.nN,n22nC.nN,n22nD.nN,n2=2n【解析】选C.因为“xM,p(x)”的否定是“xM,p(x)”,所以命题“nN,n22n”的否定是“nN,n22n”.3.已知命题“xR,x2+ax-4a12,故是假命题.所以p为假命题,q为真命题.故pq,pq为真命题. 关闭Word文档返回原板块

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3