1、高考资源网提供高考试题、高考模拟题,发布高考信息题本站投稿专用信箱:ks5u,来信请注明投稿,一经采纳,待遇从优13抽样方法(3)教学目的:1 理解分层抽样的概念2会用分层抽样从总体中抽取样本教学重点:分层抽样概念的理解及实施步骤教学难点:分层抽样从总体中抽取样本 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入:1. 在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数 2.简单随机
2、抽样:设一个总体的个体数为N如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样3.用简单随机抽样从含有N个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为; 简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等; 简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础4.抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,
3、抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本 适用范围:总体的个体数不多时 优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法 5.随机数表法: 随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码 6.简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样 7.系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样8.系统抽样的步骤:采用随机的方式将总体中的个体编号为简便起见,有时可直接采用个体所带有的号码,如考
4、生的准考证号、街道上各户的门牌号,等等为将整个的编号分段(即分成几个部分),要确定分段的间隔k当(N为总体中的个体的个数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数能被n整除,这时k=.在第一段用简单随机抽样确定起始的个体编号按照事先确定的规则抽取样本(通常是将加上间隔k,得到第2个编号+k,第3个编号+2k,这样继续下去,直到获取整个样本) 9.系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的总体中的个体数恰
5、好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除在进行系统抽样 二、讲解新课: 1.分层抽样: 当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层 2.不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样随机抽样、系统抽样、分层抽样都是不放回抽样三、讲解范例:例1某单位有
6、老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,适合的抽取样本的方法是 ( ) A. 简单的随机抽样 B. 系统抽样 C. 先从老年中排除一人,再用分层抽样 D.分层抽样答案:C例2一个单位有500名职工,其中不到35岁的有125人,35岁49岁的有280人,50岁以上的有95人为了了解这个单位职工与身体状况有关的某项指标,如何从中抽取一个容量为100的样本?解:由于职工年龄与这项指标有关,故适于用分层抽样,抽样过程如下:确定样本容量与总体的个体数之比100:500=1:5;利用抽样比确定各年龄段应抽取的个体数,依次为,即25,
7、56,19利用简单随机抽样或系统抽样的方法,在各年龄段分别抽取25,56,19人,然后合在一起,就是所要抽取的样本说明:分层抽样适用于总体由差异比较明显的几个部分组成的情况,是等概率抽样,它也是客观的、公平的;分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,使样本具有较好的代表性,而且在各层抽样时可以根据情况采用不同的抽样方法,因此在实践中有着非常广泛的应用例3某学校有职工140人,其中教师91人,教辅行政人员28人,总务后勤人员21人. 为了解职工的某种情况,要从中抽取一个容量为20的样本以下的抽样方法中,依简单随机抽样、系统抽样、分层抽样顺序的是 ( )方法1:
8、将140人从1140编号,然后制作出有编号1140的140个形状、大小相同的号签,并将号签放人同一箱子里进行均匀搅拌,然后从中抽取20个号签,编号与签号相同的20个人被选出;方法2:将140人分成20组,每组7人,并将每组7人按17编号,在第一组采用抽签法抽出号(17),则其余各组尾号也被抽到,20个人被选出; 方法3:按20:140=1:7的比例,从教师中抽取13人,从教辅行政人员中抽取4人,从总务后勤人员中抽取3人从各类人员中抽取所需人员时,均采用随机数表法,可抽到20个人A方法2,方法1,方法3 B方法2,方法3,方法1C方法1,方法2,方法3 D方法3,方法1,方法2 答案:C 四、课
9、堂练习: 1 . 统计某区的高考成绩,在总数为3000人的考生中,省重点中学毕业生有300人,区重点中学毕业生有900人,普通中学毕业生有1700人,其他考生有100人从中抽取一个容量为300的样本进行分析,各类考生要分别抽取多少人? 2. 某农场在三块地种植某种试验作物,其中平地种有150亩,河沟地种有30亩,坡地种有90亩现从中抽取一个容量为18的样本,各类地要分别抽取多少亩? 3. 一个工厂有若干车间,今采用分层抽样方法从全厂某天的2048件产品中抽取一个容量为128的样本进行质量检查若一车间这一天生产256件产品,则从该车间抽取的产品件数为_答案:1. 省重点中学抽取30人,区重点中学抽取90人,普通中学抽取170人,其他考生抽取10人2. 平地抽取10亩,河沟地抽取2亩,坡地抽取6亩3. 16五、小结 :三种抽样方法的比较类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率相等从总体中逐个抽取总体中的个数较少系统抽样将总体均分成几部分,按事先确定的规则分别在各部分中抽取在起始部分抽样时采用简单随机抽样总体中的个数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成 六、课后作业: 七、板书设计(略) 八、课后记: 共4页 第4页