收藏 分享(赏)

2012年最新资料 3.2.1 对数及其运算 (教案 新课标人教B 必修1).doc

上传人:高**** 文档编号:412080 上传时间:2024-05-27 格式:DOC 页数:8 大小:343KB
下载 相关 举报
2012年最新资料 3.2.1 对数及其运算 (教案 新课标人教B 必修1).doc_第1页
第1页 / 共8页
2012年最新资料 3.2.1 对数及其运算 (教案 新课标人教B 必修1).doc_第2页
第2页 / 共8页
2012年最新资料 3.2.1 对数及其运算 (教案 新课标人教B 必修1).doc_第3页
第3页 / 共8页
2012年最新资料 3.2.1 对数及其运算 (教案 新课标人教B 必修1).doc_第4页
第4页 / 共8页
2012年最新资料 3.2.1 对数及其运算 (教案 新课标人教B 必修1).doc_第5页
第5页 / 共8页
2012年最新资料 3.2.1 对数及其运算 (教案 新课标人教B 必修1).doc_第6页
第6页 / 共8页
2012年最新资料 3.2.1 对数及其运算 (教案 新课标人教B 必修1).doc_第7页
第7页 / 共8页
2012年最新资料 3.2.1 对数及其运算 (教案 新课标人教B 必修1).doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第三章 基本初等函数3.2.1对数及其运算韩发明 山东省枣庄市第十八中学本节教材分析一 三维目标1知识与能力目标(1) 理解对数的概念、常用对数的概念。(2) 掌握对数的运算性质和换底公式。(3) 理解对数式与指数式的关系。2 过程与方法目标(1)在指数知识的基础之上,利用类比联想,互动探究的方式来引出对数定义,加深对概念的理解。(2)鼓励学生利用网络查找知识背景,培养学生探求真理,刻苦钻研的精神。(3)通过观察、分析、类比发现新的知识,这有利于培养学生的数学情感,提高学生的学习兴趣,更有助于学生对知识的理解和掌握。3 情感态度与价值观目标(1)引导学生初步认识数学是一门严谨的科学并进一步理解

2、数学中规定的合理性。二 教学重点(1)对数的定义(2对数的运算性质。(3换底公式及其应用。三 教学难点对数的概念,换底公式的灵活应用。四 教学建议数学是一门基础学科,数学的概念、性质抽象严谨,因此在学习过程中引导学生借鉴已有知识和经验,通过观察、分析、类比发现新的知识,这有利于培养学生的数学情感,提高学生的学习兴趣,更有助于学生对知识的理解和掌握。鼓励学生利用网络查询有关对数的相关信息。对数的应用学生感到数学是有用的有趣的整合各学科知识为今后的学习做准备。对于对数的概念在讲解过程中要注意与指数概念相对比,让学生搞清楚对数与指数的关系。对于对数的运算法则,应让学生多做练习,加深印象。五 导入新课

3、思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?抽象出:1.()4?()x0.125x=?2.(1+8%)x=2x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数引出对数的概念,教师板书课题:对数与对数运算(1).思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此

4、我们先学习对数引出对数的概念,教师板书课题:对数与对数运算(1).推进新课新知探究提出问题(对于课本P572.1.2的例8)利用计算机作出函数y=131.01x的图象.从图象上看,哪一年的人口数要达到18亿、20亿、30亿?如果不利用图象该如何解决,说出你的见解?即=1.01x,=1.01x,=1.01x,在这几个式子中,x分别等于多少?你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题,回忆计算机作函数图象的方法,抓住关键点.对问题,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题,定义一种新的运算.对问题,借助,类比到

5、一般的情形.讨论结果:如图2-2-1-1.图2-2-1-1在所作的图象上,取点P,测出点P的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.=1.01x,=1.01x,=1.01x,在这几个式子中,要求x分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若=1.01x,则x称作以1.01为底的的对数.其他的可类似得到,这种运算叫做对数运算.一般性的结论就是对数的定义:一般地,如果a(a0,a1)的x次幂等

6、于N,就是ax=N,那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.有了对数的定义,前面问题的x就可表示了:x=log1.01,x=log1.01,x=log1.01.由此得到对数和指数幂之间的关系:aNb指数式ab=N底数幂指数对数式logaN=b对数的底数真数对数例如:42=162=log416;102=1002=log10100;4=2=log42;10-2=0.01-2=log100.01提出问题为什么在对数定义中规定a0,a1?根据对数定义求loga1和logaa(a0,a1)的值.负数与零有没有对数?=N与logaab=b(

7、a0,a1)是否成立?讨论结果:这是因为若a0,则N为某些值时,b不存在,如log(2);若a=0,N不为0时,b不存在,如log03,N为0时,b可为任意正数,是不唯一的,即log00有无数个值;若a=1,N不为1时,b不存在,如log12,N为1时,b可为任意数,是不唯一的,即log11有无数个值.综之,就规定了a0且a1.loga1=0,logaa=1.因为对任意a0且a1,都有a0=1,所以loga1=0.同样易知:logaa=1.即1的对数等于0,底的对数等于1.因为底数a0且a1,由指数函数的性质可知,对任意的bR,ab0恒成立,即只有正数才有对数,零和负数没有对数.因为ab=N,

8、所以b=logaN,ab=a=N,即a=N.因为ab=ab,所以logaab=b.故两个式子都成立.(a=N叫对数恒等式) 思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗?活动:同学们阅读课本P68的内容,教师引导,板书.解答:常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N的常用对数log10N简记作lgN.例如:log105简记作lg5;log103.5简记作lg3.5.自然对数:在科学技术中常常使用以无理数e=2.718 28为底的对数,以e为底的对数叫自然对数,为了简便,N的自然对数log

9、eN简记作lnN.例如:loge3简记作ln3;loge10简记作ln10.应用示例思路1例1将下列指数式写成对数式,对数式写成指数式:(1)54=625;(2)2-6=;(3)()m=5.73;(4)log16=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数.对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底的对数.对(3)根据指数式与对数式的关系,m在指数位置上,m是以为底5.73的对数.对(4)根

10、据指数式与对数式的关系,16在真数位置上,16是的-4次幂.对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂.对(6)根据指数式与对数式的关系,10在真数位置上,10是e的2.303次幂.解:(1)log5625=4;(2)log2=-6;(3)log5.73=m;(4)()-4=16;(5)10-2=0.01;(6)e2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数

11、式,则要看清真数是几,再写成幂的形式.最关键的是搞清N与b在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据.变式训练课本P64练习 1、2.例2求下列各式中x的值:(1)log64x=;(2)logx8=6;(3)lg100=x;(4)-lne2=x.活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log64x=-,所以x=64=(2)=2-4=.(2)因为logx8=6,所以x6=8=23=()6.因为x0,因此x=.(3)因为lg100=x,所以10x=100=102.因此x=

12、2.(4)因为-lne2=x,所以lne2=-x,e-x=e2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解.变式训练求下列各式中的x:log4x=;logx27=;log5(log10x)=1.解:由log4x=,得x=4=2;由logx27=,得x=27,所以x=27=81;由log5(log10x)=1,得log10x=5,即x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是( )(1)若log5x=3,则x=15 (2)若l

13、og25x=,则x=5 (3)若logx=0,则x= (4)若log5x=3,则x=A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4)活动:学生观察,教师引导学生考虑对数的定义.对数式化为指数式,根据指数幂的运算性质算出结果.对于(1)因为log5x=3,所以x=53=125,错误;对于(2)因为log25x=,所以x=25=5,正确;对于(3)因为logx=0,所以x0=,无解,错误;对于(4)因为log5x=3,所以x=5-3=,正确.总之(2)(4)正确.答案:C点评:对数的定义是对数形式和指数形式互化的依据.例2对于a0,a1,下列结论正确的是( )(1)若M=N,

14、则logaM=logaN (2)若logaM=logaN,则M=N (3)若logaM2=logaN2,则M=N (4)若M=N,则logaM2=logaN2A.(1)(3) B.(2)(4) C.(2) D.(1)(2)(4)活动:学生思考,讨论,交流,回答,教师及时评价.回想对数的有关规定.对(1)若M=N,当M为0或负数时logaMlogaN,因此错误;对(2)根据对数的定义,若logaM=logaN,则M=N,正确;对(3)若logaM2=logaN2,则M=N,因此错误;对(4)若M=N=0时,则logaM2与logaN2都不存在,因此错误.综上,(2)正确.答案:C点评:0和负数没

15、有对数,一个正数的平方根有两个.例3计算:(1)log927;(2)log81;(3)log(2-3);(4)log625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x=log927,则9x=27,32x=33,所以x=;(2)设x=log81,则()x=81,3=34,所以x=16;(3)令x=log(2-)=log(2+)-1,所以(2+)x=(2+)-1,x=-1;(4)令x=log

16、625,所以()x=625,5x=54,x=3.解法二:(1)log927=log933=log99=;(2)log81=log()16=16;(3)log(2-)=log(2+)-1=-1;(4)log625=log()3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据.变式训练课本P64练习 3、4.知能训练1.把下列各题的指数式写成对数式:(1)4216;(2)30=1;(3)4x2;(4)2x0.5;(5)54=625;(6)3-2=;(7)()-2=16.解:(1)2log416;(2)0log31;(3)log4;(4)log

17、20.5;(5)4=log5625;(6)-2=log3;(7)-2=log16.2.把下列各题的对数式写成指数式:(1)log527;(2)log87;(3)log43;(4)log7;(5)log216=4;(6)log27=-3;(7)log=6;(8)logx64=-6;(9)log2128=7;(10)log327=a.解:(1)5x27;(2)8x;(3)4x3;(4)7x;(5)24=16;(6)()-3=27;(7)()6=x;(8)x-6=64;(9)27=128;(10)3a=27.3.求下列各式中x的值:(1)log8x=;(2)logx27=;(3)log2(log5x

18、)=1;(4)log3(lgx)=0.解:(1)因为log8x=,所以x=8=(23)=2-2=;(2)因为logx27=,所以x=27=33,即x=(33)=34=81;(3)因为log2(log5x)=1,所以log5x=2,x=52=25;(4)因为log3(lgx)=0,所以lgx=1,即x=101=10.4.(1)求log84的值;(2)已知loga2=m,loga3=n,求a2m+n的值.解:(1)设log84=x,根据对数的定义有8x=4,即23x=22,所以x=,即log84=;(2)因为loga2=m,loga3=n,根据对数的定义有am=2,an=3,所以a2m+n=(am

19、)2an=(2)23=43=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用.拓展提升请你阅读课本75页的有关阅读部分的内容,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础.课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数.作业课本P74习题2.2A组 1、2.【补充作业】1.将下列指数式与对数式互化,有x的求出x的值.(1)5=;(2)log24=x;(3)3x=;(4)()x=64;(5)lg0.000 1=x

20、;(6)lne5=x.解:(1)5=化为对数式是log5=;(2)x=log4化为指数式是()x=4,即2=22,=2,x=4;(3)3x=化为对数式是x=log3,因为3x=()3=3-3,所以x=-3;(4)()x=64化为对数式是x=log64,因为()x=64=43,所以x=-3;(5)lg0.0001=x化为指数式是10x=0.0001,因为10x=0.000 1=10-4,所以x=-4;(6)lne5=x化为指数式是ex=e5,因为ex=e5,所以x=5.2.计算的值.解:设x=log3,则3x=,(3)x=(),所以x=log.所以3=.3.计算(a0,b0,c0,N0).解:=N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3